9 47: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
Line 1: Line 1:
<!-- -->
{{Template:Basic Knot Invariants|name=9_47}}

<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>

<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=47|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-7,6,-1,2,-3,5,-6,-8,9,7,-5,4,-2,-9,8/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=8.33333%>3</td ><td width=8.33333%>4</td ><td width=16.6667%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td>2</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>

{{Computer Talk Header}}

<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 47]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 47]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[8, 3, 9, 4], X[2, 15, 3, 16],
X[14, 9, 15, 10], X[10, 6, 11, 5], X[4, 14, 5, 13], X[11, 1, 12, 18],
X[17, 13, 18, 12]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 47]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -7, 6, -1, 2, -3, 5, -6, -8, 9, 7, -5, 4, -2, -9, 8]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 47]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, 2, -1, 2, 3, 2, -1, 2, 3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 47]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 6 2 3
-5 + t - -- + - + 6 t - 4 t + t
2 t
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 47]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - z + 2 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 47]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 47]], KnotSignature[Knot[9, 47]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{27, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 47]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5
-3 - q + - + 5 q - 5 q + 4 q - 4 q + 2 q
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 47]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 47]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 -2 2 4 6 8 12 14 16 20
2 - q + q + q + 2 q - q + q - 2 q - q - q + q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 47]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
-6 2 -2 3 z 5 z 2 z 2 3 z 9 z 11 z
1 - a - -- - a - --- - --- - --- + 5 z + ---- + ---- + ----- +
4 5 3 a 6 4 2
a a a a a a
3 3 3 4 4 5 5 5
3 z 6 z z 3 4 7 z 16 z z 4 z 4 z
---- + ---- + -- - 2 a z - 9 z - ---- - ----- + -- - ---- - ---- +
5 3 a 4 2 5 3 a
a a a a a a
6 6 7 7
5 6 3 z 6 z 2 z 2 z
a z + 3 z + ---- + ---- + ---- + ----
4 2 3 a
a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 47]], Vassiliev[3][Knot[9, 47]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 47]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 1 2 q 3 5
4 q + 2 q + ----- + ----- + ---- + --- + --- + 2 q t + 3 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 11 4
2 q t + 2 q t + 2 q t + 2 q t + 2 q t</nowiki></pre></td></tr>
</table>

Revision as of 20:45, 27 August 2005


9 46.gif

9_46

9 48.gif

9_48

9 47.gif Visit 9 47's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 47's page at Knotilus!

Visit 9 47's page at the original Knot Atlas!

9 47 Quick Notes




Simple square depiction
Threefold symmetrical depiction
Ornate threefold symmetrical depiction

Knot presentations

Planar diagram presentation X6271 X16,8,17,7 X8394 X2,15,3,16 X14,9,15,10 X10,6,11,5 X4,14,5,13 X11,1,12,18 X17,13,18,12
Gauss code 1, -4, 3, -7, 6, -1, 2, -3, 5, -6, -8, 9, 7, -5, 4, -2, -9, 8
Dowker-Thistlethwaite code 6 8 10 16 14 -18 4 2 -12
Conway Notation [8*-20]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-2][-7]
Hyperbolic Volume 10.05
A-Polynomial See Data:9 47/A-polynomial

[edit Notes for 9 47's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 47's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 27, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 47. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-3-2-101234χ
11       22
9      2 -2
7     22 0
5    32  -1
3   22   0
1  24    2
-1 11     0
-3 2      2
-51       -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 47]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 47]]
Out[3]=  
PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[8, 3, 9, 4], X[2, 15, 3, 16], 
 X[14, 9, 15, 10], X[10, 6, 11, 5], X[4, 14, 5, 13], X[11, 1, 12, 18], 

X[17, 13, 18, 12]]
In[4]:=
GaussCode[Knot[9, 47]]
Out[4]=  
GaussCode[1, -4, 3, -7, 6, -1, 2, -3, 5, -6, -8, 9, 7, -5, 4, -2, -9, 8]
In[5]:=
BR[Knot[9, 47]]
Out[5]=  
BR[4, {-1, 2, -1, 2, 3, 2, -1, 2, 3}]
In[6]:=
alex = Alexander[Knot[9, 47]][t]
Out[6]=  
      -3   4    6            2    3

-5 + t - -- + - + 6 t - 4 t + t

           2   t
t
In[7]:=
Conway[Knot[9, 47]][z]
Out[7]=  
     2      4    6
1 - z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 47]}
In[9]:=
{KnotDet[Knot[9, 47]], KnotSignature[Knot[9, 47]]}
Out[9]=  
{27, 2}
In[10]:=
J=Jones[Knot[9, 47]][q]
Out[10]=  
      -2   3            2      3      4      5

-3 - q + - + 5 q - 5 q + 4 q - 4 q + 2 q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 47]}
In[12]:=
A2Invariant[Knot[9, 47]][q]
Out[12]=  
     -6    -4    -2      2    4    6      8    12    14    16    20
2 - q   + q   + q   + 2 q  - q  + q  - 2 q  - q   - q   + q   + q
In[13]:=
Kauffman[Knot[9, 47]][a, z]
Out[13]=  
                                                 2      2       2
    -6   2     -2   3 z   5 z   2 z      2   3 z    9 z    11 z

1 - a - -- - a - --- - --- - --- + 5 z + ---- + ---- + ----- +

          4          5     3     a             6      4      2
         a          a     a                   a      a      a

    3      3    3                      4       4    5      5      5
 3 z    6 z    z         3      4   7 z    16 z    z    4 z    4 z
 ---- + ---- + -- - 2 a z  - 9 z  - ---- - ----- + -- - ---- - ---- + 
   5      3    a                      4      2      5     3     a
  a      a                           a      a      a     a

                  6      6      7      7
    5      6   3 z    6 z    2 z    2 z
 a z  + 3 z  + ---- + ---- + ---- + ----
                 4      2      3     a
a a a
In[14]:=
{Vassiliev[2][Knot[9, 47]], Vassiliev[3][Knot[9, 47]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[9, 47]][q, t]
Out[15]=  
         3     1       2      1      1    2 q      3        5

4 q + 2 q + ----- + ----- + ---- + --- + --- + 2 q t + 3 q t +

             5  3    3  2      2   q t    t
            q  t    q  t    q t

    5  2      7  2      7  3      9  3      11  4
2 q t + 2 q t + 2 q t + 2 q t + 2 q t