9 48

From Knot Atlas
Jump to navigationJump to search

9 47.gif

9_47

9 49.gif

9_49

9 48.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 48's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 48 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X12,8,13,7 X3,11,4,10 X11,3,12,2 X14,6,15,5 X6,14,7,13 X15,18,16,1 X9,17,10,16 X17,9,18,8
Gauss code -1, 4, -3, 1, 5, -6, 2, 9, -8, 3, -4, -2, 6, -5, -7, 8, -9, 7
Dowker-Thistlethwaite code 4 10 -14 -12 16 2 -6 18 8
Conway Notation [21,21,21-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 48 ML.gif 9 48 AP.gif
[{10, 4}, {5, 3}, {4, 7}, {2, 5}, {8, 6}, {7, 1}, {3, 8}, {9, 2}, {6, 10}, {1, 9}]

[edit Notes on presentations of 9 48]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 2
Maximal Thurston-Bennequin number [-1][-8]
Hyperbolic Volume 9.53188
A-Polynomial See Data:9 48/A-polynomial

[edit Notes for 9 48's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 2

[edit Notes for 9 48's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^2+7 t-11+7 t^{-1} - t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{3,t+1\} }[/math]
Determinant and Signature { 27, 2 }
Jones polynomial [math]\displaystyle{ -2 q^6+3 q^5-4 q^4+6 q^3-4 q^2+4 q-3+ q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^4 a^{-2} -z^2 a^{-2} +3 z^2 a^{-4} +z^2+3 a^{-4} -2 a^{-6} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^7 a^{-3} +z^7 a^{-5} +3 z^6 a^{-2} +4 z^6 a^{-4} +z^6 a^{-6} +3 z^5 a^{-1} +2 z^5 a^{-3} -z^5 a^{-5} -5 z^4 a^{-2} -6 z^4 a^{-4} +z^4-5 z^3 a^{-1} -3 z^3 a^{-3} +5 z^3 a^{-5} +3 z^3 a^{-7} +2 z^2 a^{-2} +2 z^2 a^{-4} -z^2 a^{-6} -z^2-z a^{-3} -5 z a^{-5} -4 z a^{-7} +3 a^{-4} +2 a^{-6} }[/math]
The A2 invariant [math]\displaystyle{ q^4-q^2-1+ q^{-2} - q^{-4} +2 q^{-6} + q^{-8} +2 q^{-10} +2 q^{-12} + q^{-16} -2 q^{-18} -2 q^{-20} }[/math]
The G2 invariant [math]\displaystyle{ q^{18}-2 q^{16}+4 q^{14}-6 q^{12}+3 q^{10}+q^8-6 q^6+14 q^4-14 q^2+15-8 q^{-2} -7 q^{-4} +16 q^{-6} -23 q^{-8} +18 q^{-10} -9 q^{-12} -5 q^{-14} +13 q^{-16} -13 q^{-18} +10 q^{-20} + q^{-22} -13 q^{-24} +16 q^{-26} -13 q^{-28} + q^{-30} +15 q^{-32} -24 q^{-34} +27 q^{-36} -14 q^{-38} +11 q^{-40} +7 q^{-42} -22 q^{-44} +29 q^{-46} -22 q^{-48} +19 q^{-50} -2 q^{-52} -14 q^{-54} +21 q^{-56} -8 q^{-58} +6 q^{-60} + q^{-62} -15 q^{-64} +14 q^{-66} -5 q^{-68} -8 q^{-70} +14 q^{-72} -24 q^{-74} +21 q^{-76} -5 q^{-78} -10 q^{-80} +11 q^{-82} -18 q^{-84} +16 q^{-86} -9 q^{-88} -2 q^{-90} +3 q^{-92} -7 q^{-94} +7 q^{-96} -2 q^{-98} + q^{-100} + q^{-102} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n1,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 190 }[/math] [math]\displaystyle{ 42 }[/math] [math]\displaystyle{ 480 }[/math] [math]\displaystyle{ \frac{2800}{3} }[/math] [math]\displaystyle{ \frac{448}{3} }[/math] [math]\displaystyle{ 200 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 800 }[/math] [math]\displaystyle{ 2280 }[/math] [math]\displaystyle{ 504 }[/math] [math]\displaystyle{ \frac{46031}{10} }[/math] [math]\displaystyle{ -\frac{6226}{15} }[/math] [math]\displaystyle{ \frac{38422}{15} }[/math] [math]\displaystyle{ \frac{337}{6} }[/math] [math]\displaystyle{ \frac{4111}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 9 48. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345χ
13       2-2
11      1 1
9     32 -1
7    31  2
5   13   2
3  33    0
1 12     1
-1 2      -2
-31       1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

The Coloured Jones Polynomials