K11n1

From Knot Atlas
Jump to navigationJump to search

K11a367.gif

K11a367

K11n2.gif

K11n2

K11n1.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n1 at Knotilus!


Knot K11n1.
A graph, knot K11n1.
A part of a knot and a part of a graph.

Knot presentations

Planar diagram presentation X4251 X8394 X10,6,11,5 X14,7,15,8 X2,9,3,10 X11,16,12,17 X13,20,14,21 X6,15,7,16 X17,22,18,1 X19,12,20,13 X21,18,22,19
Gauss code 1, -5, 2, -1, 3, -8, 4, -2, 5, -3, -6, 10, -7, -4, 8, 6, -9, 11, -10, 7, -11, 9
Dowker-Thistlethwaite code 4 8 10 14 2 -16 -20 6 -22 -12 -18
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n1 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 2

[edit Notes for K11n1's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^2+7 t-11+7 t^{-1} - t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 27, -2 }
Jones polynomial [math]\displaystyle{ q^{-1} - q^{-2} +3 q^{-3} -4 q^{-4} +4 q^{-5} -4 q^{-6} +4 q^{-7} -3 q^{-8} +2 q^{-9} - q^{-10} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -a^{10}+2 z^2 a^8+2 a^8-z^4 a^6-2 z^2 a^6-2 a^6+2 z^2 a^4+a^4+z^2 a^2+a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^7 a^{11}-5 z^5 a^{11}+7 z^3 a^{11}-3 z a^{11}+2 z^8 a^{10}-10 z^6 a^{10}+14 z^4 a^{10}-7 z^2 a^{10}+a^{10}+z^9 a^9-2 z^7 a^9-7 z^5 a^9+13 z^3 a^9-4 z a^9+4 z^8 a^8-19 z^6 a^8+25 z^4 a^8-12 z^2 a^8+2 a^8+z^9 a^7-2 z^7 a^7-5 z^5 a^7+8 z^3 a^7-2 z a^7+2 z^8 a^6-9 z^6 a^6+13 z^4 a^6-9 z^2 a^6+2 a^6+z^7 a^5-3 z^5 a^5+3 z^3 a^5-z a^5+2 z^4 a^4-3 z^2 a^4+a^4+z^3 a^3+z^2 a^2-a^2 }[/math]
The A2 invariant Data:K11n1/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n1/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_48,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, -7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ -56 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 286 }[/math] [math]\displaystyle{ 42 }[/math] [math]\displaystyle{ -672 }[/math] [math]\displaystyle{ -\frac{4688}{3} }[/math] [math]\displaystyle{ -\frac{800}{3} }[/math] [math]\displaystyle{ -216 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 1568 }[/math] [math]\displaystyle{ 3432 }[/math] [math]\displaystyle{ 504 }[/math] [math]\displaystyle{ \frac{87151}{10} }[/math] [math]\displaystyle{ \frac{1694}{15} }[/math] [math]\displaystyle{ \frac{52822}{15} }[/math] [math]\displaystyle{ \frac{529}{6} }[/math] [math]\displaystyle{ \frac{4431}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11n1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-1         11
-3        110
-5       2  2
-7      21  -1
-9     22   0
-11    22    0
-13   22     0
-15  12      1
-17 12       -1
-19 1        1
-211         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a367.gif

K11a367

K11n2.gif

K11n2