K11a367
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
|
K11a367 is the next knot in the sequence trefoil, cinquefoil, septafoil, nonafoil... (See also T(11,2).) K13a4878 comes after it. |
Knot presentations
| Planar diagram presentation | X12,2,13,1 X14,4,15,3 X16,6,17,5 X18,8,19,7 X20,10,21,9 X22,12,1,11 X2,14,3,13 X4,16,5,15 X6,18,7,17 X8,20,9,19 X10,22,11,21 |
| Gauss code | 1, -7, 2, -8, 3, -9, 4, -10, 5, -11, 6, -1, 7, -2, 8, -3, 9, -4, 10, -5, 11, -6 |
| Dowker-Thistlethwaite code | 12 14 16 18 20 22 2 4 6 8 10 |
| A Braid Representative | |||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^5-t^4+t^3-t^2+t-1+ t^{-1} - t^{-2} + t^{-3} - t^{-4} + t^{-5} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10}+9 z^8+28 z^6+35 z^4+15 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 11, 10 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+q^{15}-q^{14}+q^{13}-q^{12}+q^{11}-q^{10}+q^9-q^8+q^7+q^5} |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-10} +10 z^8 a^{-10} -z^8 a^{-12} +36 z^6 a^{-10} -8 z^6 a^{-12} +56 z^4 a^{-10} -21 z^4 a^{-12} +35 z^2 a^{-10} -20 z^2 a^{-12} +6 a^{-10} -5 a^{-12} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-10} +z^{10} a^{-12} +z^9 a^{-11} +z^9 a^{-13} -10 z^8 a^{-10} -9 z^8 a^{-12} +z^8 a^{-14} -8 z^7 a^{-11} -7 z^7 a^{-13} +z^7 a^{-15} +36 z^6 a^{-10} +29 z^6 a^{-12} -6 z^6 a^{-14} +z^6 a^{-16} +21 z^5 a^{-11} +15 z^5 a^{-13} -5 z^5 a^{-15} +z^5 a^{-17} -56 z^4 a^{-10} -41 z^4 a^{-12} +10 z^4 a^{-14} -4 z^4 a^{-16} +z^4 a^{-18} -20 z^3 a^{-11} -10 z^3 a^{-13} +6 z^3 a^{-15} -3 z^3 a^{-17} +z^3 a^{-19} +35 z^2 a^{-10} +25 z^2 a^{-12} -4 z^2 a^{-14} +3 z^2 a^{-16} -2 z^2 a^{-18} +z^2 a^{-20} +5 z a^{-11} +z a^{-13} -z a^{-15} +z a^{-17} -z a^{-19} +z a^{-21} -6 a^{-10} -5 a^{-12} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-18} + q^{-20} +2 q^{-22} + q^{-24} + q^{-26} - q^{-42} - q^{-44} - q^{-46} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-90} + q^{-92} + q^{-94} + q^{-98} +2 q^{-100} +2 q^{-102} + q^{-104} + q^{-106} +2 q^{-108} +3 q^{-110} +2 q^{-112} + q^{-116} +2 q^{-118} + q^{-120} - q^{-124} + q^{-128} -2 q^{-132} - q^{-134} - q^{-138} - q^{-140} - q^{-142} - q^{-144} - q^{-150} - q^{-188} - q^{-190} - q^{-196} - q^{-198} - q^{-200} - q^{-206} - q^{-208} + q^{-264} } |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a367"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^5-t^4+t^3-t^2+t-1+ t^{-1} - t^{-2} + t^{-3} - t^{-4} + t^{-5} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10}+9 z^8+28 z^6+35 z^4+15 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 11, 10 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+q^{15}-q^{14}+q^{13}-q^{12}+q^{11}-q^{10}+q^9-q^8+q^7+q^5} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-10} +10 z^8 a^{-10} -z^8 a^{-12} +36 z^6 a^{-10} -8 z^6 a^{-12} +56 z^4 a^{-10} -21 z^4 a^{-12} +35 z^2 a^{-10} -20 z^2 a^{-12} +6 a^{-10} -5 a^{-12} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-10} +z^{10} a^{-12} +z^9 a^{-11} +z^9 a^{-13} -10 z^8 a^{-10} -9 z^8 a^{-12} +z^8 a^{-14} -8 z^7 a^{-11} -7 z^7 a^{-13} +z^7 a^{-15} +36 z^6 a^{-10} +29 z^6 a^{-12} -6 z^6 a^{-14} +z^6 a^{-16} +21 z^5 a^{-11} +15 z^5 a^{-13} -5 z^5 a^{-15} +z^5 a^{-17} -56 z^4 a^{-10} -41 z^4 a^{-12} +10 z^4 a^{-14} -4 z^4 a^{-16} +z^4 a^{-18} -20 z^3 a^{-11} -10 z^3 a^{-13} +6 z^3 a^{-15} -3 z^3 a^{-17} +z^3 a^{-19} +35 z^2 a^{-10} +25 z^2 a^{-12} -4 z^2 a^{-14} +3 z^2 a^{-16} -2 z^2 a^{-18} +z^2 a^{-20} +5 z a^{-11} +z a^{-13} -z a^{-15} +z a^{-17} -z a^{-19} +z a^{-21} -6 a^{-10} -5 a^{-12} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a367"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^5-t^4+t^3-t^2+t-1+ t^{-1} - t^{-2} + t^{-3} - t^{-4} + t^{-5} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+q^{15}-q^{14}+q^{13}-q^{12}+q^{11}-q^{10}+q^9-q^8+q^7+q^5} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (15, 55) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 10 is the signature of K11a367. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|






