10 55: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_55}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=55|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,-3,9,-10,2,-5,6,-9,3,-7,8,-4,5,-6,4,-8,7/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-10</td ><td width=6.66667%>-9</td ><td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-15</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-17</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-19</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-21</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-23</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-25</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 55]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 55]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[15, 18, 16, 19], |
|||
X[9, 16, 10, 17], X[17, 10, 18, 11], X[13, 20, 14, 1], |
|||
X[19, 14, 20, 15], X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 55]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -7, 8, -4, 5, -6, |
|||
4, -8, 7]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 55]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, -1, -2, 1, 3, -2, -4, -3, -3, -3, -4}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 55]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 15 2 |
|||
21 + -- - -- - 15 t + 5 t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 55]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 + 5 z + 5 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 55]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 55]], KnotSignature[Knot[10, 55]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{61, -4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 55]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 5 8 9 10 10 7 5 2 -2 |
|||
q - --- + --- - -- + -- - -- + -- - -- + -- - -- + q |
|||
11 10 9 8 7 6 5 4 3 |
|||
q q q q q q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 55]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 55]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -38 -36 2 -30 3 -26 -24 -22 -20 3 |
|||
q + q - --- - q - --- + q - q + q + q + --- - |
|||
34 28 16 |
|||
q q q |
|||
-14 -12 2 -8 -6 |
|||
q + q + --- - q + q |
|||
10 |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 55]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 12 7 9 11 13 |
|||
a - a + a + 3 a + a + 2 a z - 4 a z - 9 a z - 3 a z - |
|||
4 2 6 2 8 2 10 2 12 2 14 2 |
|||
2 a z + 2 a z - 3 a z - 8 a z + a z + 2 a z - |
|||
5 3 7 3 9 3 11 3 13 3 4 4 |
|||
2 a z - 2 a z + 15 a z + 24 a z + 9 a z + a z - |
|||
6 4 8 4 10 4 12 4 14 4 5 5 7 5 |
|||
3 a z + 5 a z + 13 a z + a z - 3 a z + 2 a z - a z - |
|||
9 5 11 5 13 5 6 6 8 6 10 6 |
|||
16 a z - 23 a z - 10 a z + 3 a z - 4 a z - 15 a z - |
|||
12 6 14 6 7 7 9 7 11 7 13 7 |
|||
7 a z + a z + 3 a z + 5 a z + 5 a z + 3 a z + |
|||
8 8 10 8 12 8 9 9 11 9 |
|||
3 a z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 55]], Vassiliev[3][Knot[10, 55]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 55]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -3 1 2 1 3 2 5 |
|||
q + q + ------- + ------ + ------ + ------ + ------ + ------ + |
|||
25 10 23 9 21 9 21 8 19 8 19 7 |
|||
q t q t q t q t q t q t |
|||
3 4 5 6 4 4 6 |
|||
------ + ------ + ------ + ------ + ------ + ------ + ------ + |
|||
17 7 17 6 15 6 15 5 13 5 13 4 11 4 |
|||
q t q t q t q t q t q t q t |
|||
3 4 2 3 2 |
|||
------ + ----- + ----- + ----- + ---- |
|||
11 3 9 3 9 2 7 2 5 |
|||
q t q t q t q t q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 21:45, 27 August 2005
|
|
![]() |
Visit 10 55's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 55's page at Knotilus! Visit 10 55's page at the original Knot Atlas! |
10 55 Quick Notes |
Knot presentations
Planar diagram presentation | X1425 X3849 X5,12,6,13 X15,18,16,19 X9,16,10,17 X17,10,18,11 X13,20,14,1 X19,14,20,15 X11,6,12,7 X7283 |
Gauss code | -1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7 |
Dowker-Thistlethwaite code | 4 8 12 2 16 6 20 18 10 14 |
Conway Notation | [23,21,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 t^2-15 t+21-15 t^{-1} +5 t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 z^4+5 z^2+1} |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 61, -4 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} -2 q^{-3} +5 q^{-4} -7 q^{-5} +10 q^{-6} -10 q^{-7} +9 q^{-8} -8 q^{-9} +5 q^{-10} -3 q^{-11} + q^{-12} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{12}-3 z^2 a^{10}-3 a^{10}+2 z^4 a^8+3 z^2 a^8+a^8+2 z^4 a^6+3 z^2 a^6+a^6+z^4 a^4+2 z^2 a^4+a^4} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{14}-3 z^4 a^{14}+2 z^2 a^{14}+3 z^7 a^{13}-10 z^5 a^{13}+9 z^3 a^{13}-3 z a^{13}+3 z^8 a^{12}-7 z^6 a^{12}+z^4 a^{12}+z^2 a^{12}+a^{12}+z^9 a^{11}+5 z^7 a^{11}-23 z^5 a^{11}+24 z^3 a^{11}-9 z a^{11}+6 z^8 a^{10}-15 z^6 a^{10}+13 z^4 a^{10}-8 z^2 a^{10}+3 a^{10}+z^9 a^9+5 z^7 a^9-16 z^5 a^9+15 z^3 a^9-4 z a^9+3 z^8 a^8-4 z^6 a^8+5 z^4 a^8-3 z^2 a^8+a^8+3 z^7 a^7-z^5 a^7-2 z^3 a^7+2 z a^7+3 z^6 a^6-3 z^4 a^6+2 z^2 a^6-a^6+2 z^5 a^5-2 z^3 a^5+z^4 a^4-2 z^2 a^4+a^4} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{38}+q^{36}-2 q^{34}-q^{30}-3 q^{28}+q^{26}-q^{24}+q^{22}+q^{20}+3 q^{16}-q^{14}+q^{12}+2 q^{10}-q^8+q^6} |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{190}-2 q^{188}+5 q^{186}-9 q^{184}+9 q^{182}-8 q^{180}-3 q^{178}+19 q^{176}-34 q^{174}+45 q^{172}-41 q^{170}+18 q^{168}+20 q^{166}-58 q^{164}+86 q^{162}-82 q^{160}+52 q^{158}+q^{156}-55 q^{154}+88 q^{152}-84 q^{150}+52 q^{148}+2 q^{146}-47 q^{144}+64 q^{142}-51 q^{140}+8 q^{138}+38 q^{136}-74 q^{134}+73 q^{132}-42 q^{130}-16 q^{128}+70 q^{126}-109 q^{124}+108 q^{122}-75 q^{120}+12 q^{118}+50 q^{116}-103 q^{114}+117 q^{112}-91 q^{110}+38 q^{108}+24 q^{106}-67 q^{104}+76 q^{102}-52 q^{100}+8 q^{98}+35 q^{96}-54 q^{94}+45 q^{92}-9 q^{90}-33 q^{88}+68 q^{86}-70 q^{84}+49 q^{82}-10 q^{80}-31 q^{78}+56 q^{76}-62 q^{74}+55 q^{72}-31 q^{70}+8 q^{68}+15 q^{66}-29 q^{64}+34 q^{62}-31 q^{60}+25 q^{58}-12 q^{56}+2 q^{54}+8 q^{52}-14 q^{50}+15 q^{48}-11 q^{46}+8 q^{44}-2 q^{42}-q^{40}+3 q^{38}-3 q^{36}+3 q^{34}-q^{32}+q^{30}} |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{25}-2 q^{23}+2 q^{21}-3 q^{19}+q^{17}-q^{15}+3 q^{11}-2 q^9+3 q^7-q^5+q^3} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{70}-2 q^{68}-2 q^{66}+7 q^{64}-2 q^{62}-10 q^{60}+11 q^{58}+5 q^{56}-17 q^{54}+7 q^{52}+13 q^{50}-14 q^{48}-q^{46}+13 q^{44}-7 q^{42}-8 q^{40}+6 q^{38}+5 q^{36}-10 q^{34}-5 q^{32}+16 q^{30}-7 q^{28}-13 q^{26}+16 q^{24}-10 q^{20}+9 q^{18}+q^{16}-3 q^{14}+4 q^{12}-q^8+q^6} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{135}-2 q^{133}-2 q^{131}+3 q^{129}+7 q^{127}-2 q^{125}-16 q^{123}-2 q^{121}+23 q^{119}+15 q^{117}-27 q^{115}-34 q^{113}+22 q^{111}+53 q^{109}-5 q^{107}-63 q^{105}-23 q^{103}+66 q^{101}+46 q^{99}-53 q^{97}-69 q^{95}+32 q^{93}+81 q^{91}-10 q^{89}-82 q^{87}-8 q^{85}+77 q^{83}+24 q^{81}-64 q^{79}-37 q^{77}+53 q^{75}+44 q^{73}-31 q^{71}-56 q^{69}+10 q^{67}+58 q^{65}+23 q^{63}-61 q^{61}-48 q^{59}+49 q^{57}+69 q^{55}-32 q^{53}-83 q^{51}+9 q^{49}+76 q^{47}+7 q^{45}-60 q^{43}-19 q^{41}+38 q^{39}+20 q^{37}-21 q^{35}-10 q^{33}+8 q^{31}+7 q^{29}-2 q^{27}+q^{25}+2 q^{23}-q^{21}-q^{19}+3 q^{17}+q^{15}-q^{11}+q^9} |
4 | |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{325}-2 q^{323}-2 q^{321}+3 q^{319}+3 q^{317}+3 q^{315}-9 q^{311}-16 q^{309}-q^{307}+20 q^{305}+28 q^{303}+19 q^{301}-16 q^{299}-58 q^{297}-65 q^{295}+q^{293}+84 q^{291}+121 q^{289}+74 q^{287}-66 q^{285}-203 q^{283}-205 q^{281}-19 q^{279}+226 q^{277}+358 q^{275}+238 q^{273}-124 q^{271}-480 q^{269}-531 q^{267}-155 q^{265}+419 q^{263}+798 q^{261}+623 q^{259}-96 q^{257}-885 q^{255}-1133 q^{253}-508 q^{251}+632 q^{249}+1476 q^{247}+1290 q^{245}+24 q^{243}-1485 q^{241}-2015 q^{239}-955 q^{237}+1011 q^{235}+2428 q^{233}+2015 q^{231}-143 q^{229}-2410 q^{227}-2870 q^{225}-958 q^{223}+1898 q^{221}+3362 q^{219}+2055 q^{217}-1071 q^{215}-3398 q^{213}-2890 q^{211}+108 q^{209}+3036 q^{207}+3361 q^{205}+776 q^{203}-2440 q^{201}-3443 q^{199}-1413 q^{197}+1768 q^{195}+3223 q^{193}+1764 q^{191}-1169 q^{189}-2847 q^{187}-1860 q^{185}+706 q^{183}+2437 q^{181}+1814 q^{179}-406 q^{177}-2061 q^{175}-1735 q^{173}+139 q^{171}+1794 q^{169}+1741 q^{167}+122 q^{165}-1537 q^{163}-1842 q^{161}-575 q^{159}+1243 q^{157}+2070 q^{155}+1160 q^{153}-769 q^{151}-2230 q^{149}-1959 q^{147}+52 q^{145}+2254 q^{143}+2757 q^{141}+909 q^{139}-1937 q^{137}-3398 q^{135}-2009 q^{133}+1263 q^{131}+3678 q^{129}+3029 q^{127}-304 q^{125}-3463 q^{123}-3705 q^{121}-781 q^{119}+2791 q^{117}+3905 q^{115}+1697 q^{113}-1825 q^{111}-3568 q^{109}-2238 q^{107}+792 q^{105}+2847 q^{103}+2347 q^{101}+34 q^{99}-1967 q^{97}-2065 q^{95}-523 q^{93}+1118 q^{91}+1569 q^{89}+709 q^{87}-513 q^{85}-1053 q^{83}-638 q^{81}+137 q^{79}+599 q^{77}+491 q^{75}+31 q^{73}-314 q^{71}-316 q^{69}-79 q^{67}+139 q^{65}+185 q^{63}+74 q^{61}-53 q^{59}-96 q^{57}-56 q^{55}+16 q^{53}+54 q^{51}+31 q^{49}+q^{47}-17 q^{45}-20 q^{43}-7 q^{41}+14 q^{39}+9 q^{37}+2 q^{35}+2 q^{33}-4 q^{31}-4 q^{29}+3 q^{27}+2 q^{25}+q^{21}-q^{17}+q^{15}} |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{38}+q^{36}-2 q^{34}-q^{30}-3 q^{28}+q^{26}-q^{24}+q^{22}+q^{20}+3 q^{16}-q^{14}+q^{12}+2 q^{10}-q^8+q^6} |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{96}+q^{94}-q^{92}-4 q^{90}-2 q^{88}+4 q^{86}+2 q^{84}-4 q^{82}-2 q^{80}+7 q^{78}+6 q^{76}-7 q^{74}-5 q^{72}+8 q^{70}+6 q^{68}-4 q^{66}-5 q^{64}+7 q^{62}+2 q^{60}-7 q^{58}-4 q^{56}-3 q^{52}-3 q^{50}+2 q^{48}-5 q^{46}-6 q^{44}+4 q^{42}+7 q^{40}-8 q^{38}-5 q^{36}+13 q^{34}+7 q^{32}-7 q^{30}-q^{28}+9 q^{26}+4 q^{24}-5 q^{22}+q^{20}+4 q^{18}-q^{16}-q^{14}+q^{12}} |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+q^{76}+2 q^{74}-7 q^{72}+4 q^{70}+2 q^{68}-9 q^{66}+11 q^{64}+6 q^{62}-9 q^{60}+11 q^{58}+4 q^{56}-13 q^{54}-q^{52}+q^{50}-8 q^{48}-6 q^{46}+5 q^{42}-7 q^{40}-2 q^{38}+15 q^{36}-8 q^{34}-3 q^{32}+15 q^{30}-4 q^{28}-5 q^{26}+10 q^{24}-3 q^{20}+4 q^{18}+q^{16}-q^{14}+q^{12}} |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{51}+q^{49}+q^{47}-2 q^{45}-3 q^{41}-q^{39}-3 q^{37}+q^{35}-q^{33}+q^{31}+q^{29}+q^{27}+q^{25}+3 q^{21}-q^{19}+2 q^{17}+2 q^{13}-q^{11}+q^9} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+11 q^{72}-14 q^{70}+16 q^{68}-17 q^{66}+15 q^{64}-12 q^{62}+5 q^{60}+q^{58}-10 q^{56}+17 q^{54}-25 q^{52}+29 q^{50}-32 q^{48}+30 q^{46}-26 q^{44}+21 q^{42}-13 q^{40}+6 q^{38}+3 q^{36}-8 q^{34}+13 q^{32}-15 q^{30}+16 q^{28}-13 q^{26}+12 q^{24}-8 q^{22}+7 q^{20}-4 q^{18}+3 q^{16}-q^{14}+q^{12}} |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{130}-2 q^{126}-2 q^{124}+3 q^{122}+5 q^{120}-3 q^{118}-9 q^{116}-2 q^{114}+11 q^{112}+8 q^{110}-10 q^{108}-14 q^{106}+5 q^{104}+19 q^{102}+7 q^{100}-15 q^{98}-11 q^{96}+10 q^{94}+16 q^{92}-2 q^{90}-14 q^{88}-4 q^{86}+9 q^{84}+3 q^{82}-10 q^{80}-8 q^{78}+6 q^{76}+6 q^{74}-8 q^{72}-12 q^{70}+3 q^{68}+13 q^{66}-q^{64}-14 q^{62}-4 q^{60}+15 q^{58}+10 q^{56}-9 q^{54}-14 q^{52}+4 q^{50}+17 q^{48}+6 q^{46}-10 q^{44}-9 q^{42}+3 q^{40}+11 q^{38}+4 q^{36}-4 q^{34}-5 q^{32}+q^{30}+4 q^{28}+2 q^{26}-q^{24}-q^{22}+q^{18}} |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 55"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 t^2-15 t+21-15 t^{-1} +5 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 z^4+5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 61, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} -2 q^{-3} +5 q^{-4} -7 q^{-5} +10 q^{-6} -10 q^{-7} +9 q^{-8} -8 q^{-9} +5 q^{-10} -3 q^{-11} + q^{-12} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{12}-3 z^2 a^{10}-3 a^{10}+2 z^4 a^8+3 z^2 a^8+a^8+2 z^4 a^6+3 z^2 a^6+a^6+z^4 a^4+2 z^2 a^4+a^4} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{14}-3 z^4 a^{14}+2 z^2 a^{14}+3 z^7 a^{13}-10 z^5 a^{13}+9 z^3 a^{13}-3 z a^{13}+3 z^8 a^{12}-7 z^6 a^{12}+z^4 a^{12}+z^2 a^{12}+a^{12}+z^9 a^{11}+5 z^7 a^{11}-23 z^5 a^{11}+24 z^3 a^{11}-9 z a^{11}+6 z^8 a^{10}-15 z^6 a^{10}+13 z^4 a^{10}-8 z^2 a^{10}+3 a^{10}+z^9 a^9+5 z^7 a^9-16 z^5 a^9+15 z^3 a^9-4 z a^9+3 z^8 a^8-4 z^6 a^8+5 z^4 a^8-3 z^2 a^8+a^8+3 z^7 a^7-z^5 a^7-2 z^3 a^7+2 z a^7+3 z^6 a^6-3 z^4 a^6+2 z^2 a^6-a^6+2 z^5 a^5-2 z^3 a^5+z^4 a^4-2 z^2 a^4+a^4} |
Vassiliev invariants
V2 and V3: | (5, -10) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 10 55. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | χ | |||||||||
-3 | 1 | 1 | |||||||||||||||||||
-5 | 2 | 1 | -1 | ||||||||||||||||||
-7 | 3 | 3 | |||||||||||||||||||
-9 | 4 | 2 | -2 | ||||||||||||||||||
-11 | 6 | 3 | 3 | ||||||||||||||||||
-13 | 4 | 4 | 0 | ||||||||||||||||||
-15 | 5 | 6 | -1 | ||||||||||||||||||
-17 | 3 | 4 | 1 | ||||||||||||||||||
-19 | 2 | 5 | -3 | ||||||||||||||||||
-21 | 1 | 3 | 2 | ||||||||||||||||||
-23 | 2 | -2 | |||||||||||||||||||
-25 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 55]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 55]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[15, 18, 16, 19],X[9, 16, 10, 17], X[17, 10, 18, 11], X[13, 20, 14, 1],X[19, 14, 20, 15], X[11, 6, 12, 7], X[7, 2, 8, 3]] |
In[4]:= | GaussCode[Knot[10, 55]] |
Out[4]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7] |
In[5]:= | BR[Knot[10, 55]] |
Out[5]= | BR[5, {-1, -1, -1, -2, 1, 3, -2, -4, -3, -3, -3, -4}] |
In[6]:= | alex = Alexander[Knot[10, 55]][t] |
Out[6]= | 5 15 2 |
In[7]:= | Conway[Knot[10, 55]][z] |
Out[7]= | 2 4 1 + 5 z + 5 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 55]} |
In[9]:= | {KnotDet[Knot[10, 55]], KnotSignature[Knot[10, 55]]} |
Out[9]= | {61, -4} |
In[10]:= | J=Jones[Knot[10, 55]][q] |
Out[10]= | -12 3 5 8 9 10 10 7 5 2 -2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 55]} |
In[12]:= | A2Invariant[Knot[10, 55]][q] |
Out[12]= | -38 -36 2 -30 3 -26 -24 -22 -20 3 |
In[13]:= | Kauffman[Knot[10, 55]][a, z] |
Out[13]= | 4 6 8 10 12 7 9 11 13 |
In[14]:= | {Vassiliev[2][Knot[10, 55]], Vassiliev[3][Knot[10, 55]]} |
Out[14]= | {0, -10} |
In[15]:= | Kh[Knot[10, 55]][q, t] |
Out[15]= | -5 -3 1 2 1 3 2 5 |