10 55
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 55's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3849 X5,12,6,13 X15,18,16,19 X9,16,10,17 X17,10,18,11 X13,20,14,1 X19,14,20,15 X11,6,12,7 X7283 |
| Gauss code | -1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7 |
| Dowker-Thistlethwaite code | 4 8 12 2 16 6 20 18 10 14 |
| Conway Notation | [23,21,2] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{13, 5}, {4, 11}, {9, 12}, {11, 13}, {10, 6}, {5, 9}, {6, 3}, {2, 4}, {3, 1}, {7, 10}, {8, 2}, {12, 7}, {1, 8}] |
[edit Notes on presentations of 10 55]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 55"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,12,6,13 X15,18,16,19 X9,16,10,17 X17,10,18,11 X13,20,14,1 X19,14,20,15 X11,6,12,7 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 16 6 20 18 10 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[23,21,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{-1,-1,-1,-2,1,3,-2,-4,-3,-3,-3,-4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{13, 5}, {4, 11}, {9, 12}, {11, 13}, {10, 6}, {5, 9}, {6, 3}, {2, 4}, {3, 1}, {7, 10}, {8, 2}, {12, 7}, {1, 8}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{38}+q^{36}-2 q^{34}-q^{30}-3 q^{28}+q^{26}-q^{24}+q^{22}+q^{20}+3 q^{16}-q^{14}+q^{12}+2 q^{10}-q^8+q^6} |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{96}+q^{94}-q^{92}-4 q^{90}-2 q^{88}+4 q^{86}+2 q^{84}-4 q^{82}-2 q^{80}+7 q^{78}+6 q^{76}-7 q^{74}-5 q^{72}+8 q^{70}+6 q^{68}-4 q^{66}-5 q^{64}+7 q^{62}+2 q^{60}-7 q^{58}-4 q^{56}-3 q^{52}-3 q^{50}+2 q^{48}-5 q^{46}-6 q^{44}+4 q^{42}+7 q^{40}-8 q^{38}-5 q^{36}+13 q^{34}+7 q^{32}-7 q^{30}-q^{28}+9 q^{26}+4 q^{24}-5 q^{22}+q^{20}+4 q^{18}-q^{16}-q^{14}+q^{12}} |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+q^{76}+2 q^{74}-7 q^{72}+4 q^{70}+2 q^{68}-9 q^{66}+11 q^{64}+6 q^{62}-9 q^{60}+11 q^{58}+4 q^{56}-13 q^{54}-q^{52}+q^{50}-8 q^{48}-6 q^{46}+5 q^{42}-7 q^{40}-2 q^{38}+15 q^{36}-8 q^{34}-3 q^{32}+15 q^{30}-4 q^{28}-5 q^{26}+10 q^{24}-3 q^{20}+4 q^{18}+q^{16}-q^{14}+q^{12}} |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{51}+q^{49}+q^{47}-2 q^{45}-3 q^{41}-q^{39}-3 q^{37}+q^{35}-q^{33}+q^{31}+q^{29}+q^{27}+q^{25}+3 q^{21}-q^{19}+2 q^{17}+2 q^{13}-q^{11}+q^9} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+11 q^{72}-14 q^{70}+16 q^{68}-17 q^{66}+15 q^{64}-12 q^{62}+5 q^{60}+q^{58}-10 q^{56}+17 q^{54}-25 q^{52}+29 q^{50}-32 q^{48}+30 q^{46}-26 q^{44}+21 q^{42}-13 q^{40}+6 q^{38}+3 q^{36}-8 q^{34}+13 q^{32}-15 q^{30}+16 q^{28}-13 q^{26}+12 q^{24}-8 q^{22}+7 q^{20}-4 q^{18}+3 q^{16}-q^{14}+q^{12}} |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{130}-2 q^{126}-2 q^{124}+3 q^{122}+5 q^{120}-3 q^{118}-9 q^{116}-2 q^{114}+11 q^{112}+8 q^{110}-10 q^{108}-14 q^{106}+5 q^{104}+19 q^{102}+7 q^{100}-15 q^{98}-11 q^{96}+10 q^{94}+16 q^{92}-2 q^{90}-14 q^{88}-4 q^{86}+9 q^{84}+3 q^{82}-10 q^{80}-8 q^{78}+6 q^{76}+6 q^{74}-8 q^{72}-12 q^{70}+3 q^{68}+13 q^{66}-q^{64}-14 q^{62}-4 q^{60}+15 q^{58}+10 q^{56}-9 q^{54}-14 q^{52}+4 q^{50}+17 q^{48}+6 q^{46}-10 q^{44}-9 q^{42}+3 q^{40}+11 q^{38}+4 q^{36}-4 q^{34}-5 q^{32}+q^{30}+4 q^{28}+2 q^{26}-q^{24}-q^{22}+q^{18}} |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 55"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 61, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 55"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5 t^2-15 t+21-15 t^{-1} +5 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} -2 q^{-3} +5 q^{-4} -7 q^{-5} +10 q^{-6} -10 q^{-7} +9 q^{-8} -8 q^{-9} +5 q^{-10} -3 q^{-11} + q^{-12} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (5, -10) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 10 55. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} -2 q^{-5} + q^{-6} +5 q^{-7} -9 q^{-8} +5 q^{-9} +13 q^{-10} -28 q^{-11} +15 q^{-12} +29 q^{-13} -57 q^{-14} +21 q^{-15} +52 q^{-16} -78 q^{-17} +16 q^{-18} +67 q^{-19} -77 q^{-20} +2 q^{-21} +68 q^{-22} -57 q^{-23} -12 q^{-24} +55 q^{-25} -30 q^{-26} -18 q^{-27} +31 q^{-28} -8 q^{-29} -12 q^{-30} +10 q^{-31} -3 q^{-33} + q^{-34} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} -2 q^{-7} + q^{-8} + q^{-9} +3 q^{-10} -6 q^{-11} + q^{-12} +4 q^{-13} +2 q^{-14} -9 q^{-15} +10 q^{-16} +5 q^{-17} -16 q^{-18} -20 q^{-19} +51 q^{-20} +23 q^{-21} -73 q^{-22} -61 q^{-23} +118 q^{-24} +92 q^{-25} -140 q^{-26} -153 q^{-27} +169 q^{-28} +193 q^{-29} -160 q^{-30} -250 q^{-31} +156 q^{-32} +277 q^{-33} -125 q^{-34} -298 q^{-35} +90 q^{-36} +302 q^{-37} -50 q^{-38} -289 q^{-39} +275 q^{-41} +38 q^{-42} -236 q^{-43} -85 q^{-44} +201 q^{-45} +110 q^{-46} -145 q^{-47} -134 q^{-48} +100 q^{-49} +126 q^{-50} -46 q^{-51} -114 q^{-52} +11 q^{-53} +86 q^{-54} +12 q^{-55} -56 q^{-56} -20 q^{-57} +30 q^{-58} +19 q^{-59} -14 q^{-60} -12 q^{-61} +5 q^{-62} +5 q^{-63} -3 q^{-65} + q^{-66} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-8} -2 q^{-9} + q^{-10} + q^{-11} - q^{-12} +6 q^{-13} -10 q^{-14} +2 q^{-15} +3 q^{-16} -4 q^{-17} +25 q^{-18} -24 q^{-19} -8 q^{-21} -21 q^{-22} +76 q^{-23} -16 q^{-24} +6 q^{-25} -66 q^{-26} -107 q^{-27} +159 q^{-28} +78 q^{-29} +98 q^{-30} -180 q^{-31} -377 q^{-32} +177 q^{-33} +296 q^{-34} +421 q^{-35} -237 q^{-36} -867 q^{-37} -42 q^{-38} +492 q^{-39} +1001 q^{-40} -43 q^{-41} -1379 q^{-42} -514 q^{-43} +446 q^{-44} +1590 q^{-45} +399 q^{-46} -1626 q^{-47} -985 q^{-48} +130 q^{-49} +1891 q^{-50} +862 q^{-51} -1537 q^{-52} -1221 q^{-53} -269 q^{-54} +1845 q^{-55} +1149 q^{-56} -1230 q^{-57} -1198 q^{-58} -618 q^{-59} +1555 q^{-60} +1259 q^{-61} -802 q^{-62} -1005 q^{-63} -905 q^{-64} +1100 q^{-65} +1225 q^{-66} -295 q^{-67} -667 q^{-68} -1093 q^{-69} +527 q^{-70} +1009 q^{-71} +168 q^{-72} -201 q^{-73} -1045 q^{-74} -16 q^{-75} +583 q^{-76} +390 q^{-77} +248 q^{-78} -715 q^{-79} -301 q^{-80} +116 q^{-81} +291 q^{-82} +445 q^{-83} -283 q^{-84} -255 q^{-85} -144 q^{-86} +57 q^{-87} +346 q^{-88} -17 q^{-89} -77 q^{-90} -142 q^{-91} -69 q^{-92} +149 q^{-93} +35 q^{-94} +19 q^{-95} -53 q^{-96} -58 q^{-97} +36 q^{-98} +11 q^{-99} +20 q^{-100} -7 q^{-101} -19 q^{-102} +5 q^{-103} +5 q^{-105} -3 q^{-107} + q^{-108} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




