7 3: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=7_3}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=7|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,5,-1,3,-4,6,-2,7,-5,4,-3/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=8.33333%>3</td ><td width=8.33333%>4</td ><td width=8.33333%>5</td ><td width=8.33333%>6</td ><td width=8.33333%>7</td ><td width=16.6667%>χ</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 1, 7], X[8, 14, 9, 13], |
|||
X[12, 6, 13, 5], X[2, 10, 3, 9], X[4, 12, 5, 11]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 1, 2, -1, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 3]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 2 |
|||
3 + -- - - - 3 t + 2 t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 3]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 + 5 z + 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 3]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[7, 3]], KnotSignature[Knot[7, 3]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{13, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[7, 3]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 |
|||
q - q + 2 q - 2 q + 3 q - 2 q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 3]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[7, 3]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 10 14 16 18 20 22 24 26 28 |
|||
q + q + q + 2 q + q + q - q - q - q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 3]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 3 3 |
|||
-2 2 -4 2 z z 3 z z 6 z 4 z 3 z z z |
|||
-- - -- + a - --- + -- + --- - --- + ---- + ---- - ---- + --- - -- - |
|||
8 6 11 9 7 10 8 6 4 11 9 |
|||
a a a a a a a a a a a |
|||
3 3 4 4 4 4 5 5 5 6 6 |
|||
4 z 2 z z 3 z 3 z z z 2 z z z z |
|||
---- - ---- + --- - ---- - ---- + -- + -- + ---- + -- + -- + -- |
|||
7 5 10 8 6 4 9 7 5 8 6 |
|||
a a a a a a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 3]], Vassiliev[3][Knot[7, 3]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 11}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[7, 3]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 5 7 2 9 2 9 3 11 3 11 4 13 4 |
|||
q + q + q t + q t + q t + q t + q t + 2 q t + q t + |
|||
15 5 15 6 19 7 |
|||
2 q t + q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:42, 27 August 2005
|
|
|
|
Visit 7 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 7 3's page at Knotilus! Visit 7 3's page at the original Knot Atlas! |
7 3 Quick Notes |
Knot presentations
| Planar diagram presentation | X6271 X10,4,11,3 X14,8,1,7 X8,14,9,13 X12,6,13,5 X2,10,3,9 X4,12,5,11 |
| Gauss code | 1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3 |
| Dowker-Thistlethwaite code | 6 10 12 14 2 4 8 |
| Conway Notation | [43] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^2+2 t^{-2} -3 t-3 t^{-1} +3 }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^4+5 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 13, 4 } |
| Jones polynomial | [math]\displaystyle{ -q^9+q^8-2 q^7+3 q^6-2 q^5+2 q^4-q^3+q^2 }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^2 a^{-8} -2 a^{-8} +z^4 a^{-6} +3 z^2 a^{-6} +2 a^{-6} +z^4 a^{-4} +3 z^2 a^{-4} + a^{-4} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^3 a^{-11} -2 z a^{-11} +z^4 a^{-10} -z^2 a^{-10} +z^5 a^{-9} -z^3 a^{-9} +z a^{-9} +z^6 a^{-8} -3 z^4 a^{-8} +6 z^2 a^{-8} -2 a^{-8} +2 z^5 a^{-7} -4 z^3 a^{-7} +3 z a^{-7} +z^6 a^{-6} -3 z^4 a^{-6} +4 z^2 a^{-6} -2 a^{-6} +z^5 a^{-5} -2 z^3 a^{-5} +z^4 a^{-4} -3 z^2 a^{-4} + a^{-4} }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{-6} + q^{-10} + q^{-14} +2 q^{-16} + q^{-18} + q^{-20} - q^{-22} - q^{-24} - q^{-26} - q^{-28} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{-30} + q^{-34} - q^{-36} + q^{-38} + q^{-40} - q^{-42} +3 q^{-44} - q^{-46} +2 q^{-48} - q^{-52} +2 q^{-54} -2 q^{-56} +2 q^{-58} - q^{-62} +2 q^{-64} + q^{-68} +2 q^{-70} - q^{-72} +2 q^{-74} +3 q^{-80} -2 q^{-82} +3 q^{-84} +2 q^{-88} + q^{-90} -3 q^{-92} +3 q^{-94} -3 q^{-96} +2 q^{-98} - q^{-100} -3 q^{-102} + q^{-104} - q^{-106} - q^{-108} -3 q^{-112} - q^{-114} - q^{-116} -2 q^{-118} +2 q^{-120} -3 q^{-122} + q^{-124} - q^{-128} + q^{-130} - q^{-132} + q^{-134} - q^{-136} + q^{-138} - q^{-142} + q^{-144} + q^{-148} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^{-3} + q^{-7} + q^{-11} + q^{-13} - q^{-15} - q^{-19} }[/math] |
| 2 | [math]\displaystyle{ q^{-6} +2 q^{-12} + q^{-14} - q^{-16} + q^{-18} + q^{-20} - q^{-22} + q^{-24} + q^{-26} - q^{-28} + q^{-34} -2 q^{-36} - q^{-38} + q^{-40} -2 q^{-42} - q^{-44} + q^{-46} + q^{-52} }[/math] |
| 3 | [math]\displaystyle{ q^{-9} + q^{-15} +2 q^{-17} + q^{-19} - q^{-21} - q^{-23} +2 q^{-25} +2 q^{-27} -2 q^{-31} +3 q^{-35} + q^{-37} -2 q^{-39} - q^{-41} +2 q^{-43} + q^{-45} -2 q^{-47} - q^{-49} + q^{-51} -2 q^{-55} - q^{-57} - q^{-59} +2 q^{-63} -2 q^{-65} -2 q^{-67} +3 q^{-71} - q^{-73} -3 q^{-75} +3 q^{-79} + q^{-81} - q^{-83} + q^{-87} + q^{-89} - q^{-99} }[/math] |
| 4 | [math]\displaystyle{ q^{-12} + q^{-18} + q^{-20} +2 q^{-22} - q^{-26} +4 q^{-32} +2 q^{-34} - q^{-36} -2 q^{-38} -3 q^{-40} +2 q^{-42} +3 q^{-44} +3 q^{-46} -5 q^{-50} - q^{-52} +2 q^{-54} +5 q^{-56} +2 q^{-58} -5 q^{-60} -4 q^{-62} - q^{-64} +4 q^{-66} +3 q^{-68} -4 q^{-70} -3 q^{-72} - q^{-74} +3 q^{-76} +2 q^{-78} -3 q^{-80} -2 q^{-82} - q^{-84} + q^{-86} -2 q^{-90} - q^{-92} - q^{-94} - q^{-96} + q^{-98} +4 q^{-100} - q^{-102} -2 q^{-104} -2 q^{-106} + q^{-108} +7 q^{-110} + q^{-112} -2 q^{-114} -5 q^{-116} - q^{-118} +7 q^{-120} +3 q^{-122} - q^{-124} -4 q^{-126} -3 q^{-128} +3 q^{-130} +2 q^{-132} +2 q^{-134} - q^{-136} -2 q^{-138} - q^{-142} + q^{-144} - q^{-148} - q^{-152} + q^{-160} }[/math] |
| 5 | [math]\displaystyle{ q^{-15} + q^{-21} + q^{-23} + q^{-25} + q^{-27} - q^{-31} +2 q^{-35} +2 q^{-37} +3 q^{-39} + q^{-41} -2 q^{-43} -4 q^{-45} -2 q^{-47} + q^{-49} +4 q^{-51} +5 q^{-53} +2 q^{-55} - q^{-57} -5 q^{-59} -5 q^{-61} +4 q^{-65} +7 q^{-67} +5 q^{-69} -2 q^{-71} -8 q^{-73} -8 q^{-75} - q^{-77} +6 q^{-79} +9 q^{-81} +4 q^{-83} -5 q^{-85} -11 q^{-87} -7 q^{-89} +3 q^{-91} +9 q^{-93} +7 q^{-95} -2 q^{-97} -9 q^{-99} -8 q^{-101} +7 q^{-105} +5 q^{-107} - q^{-109} -6 q^{-111} -5 q^{-113} +4 q^{-117} +3 q^{-119} - q^{-121} -3 q^{-123} - q^{-125} +2 q^{-129} + q^{-131} - q^{-133} - q^{-137} - q^{-139} - q^{-141} +2 q^{-143} +6 q^{-145} + q^{-147} - q^{-149} -3 q^{-151} -4 q^{-153} +2 q^{-155} +10 q^{-157} +7 q^{-159} -7 q^{-163} -11 q^{-165} -3 q^{-167} +8 q^{-169} +11 q^{-171} +4 q^{-173} -7 q^{-175} -12 q^{-177} -7 q^{-179} +3 q^{-181} +9 q^{-183} +7 q^{-185} + q^{-187} -6 q^{-189} -6 q^{-191} -3 q^{-193} +2 q^{-195} +4 q^{-197} +3 q^{-199} -2 q^{-203} -3 q^{-205} - q^{-207} + q^{-211} +2 q^{-213} - q^{-217} + q^{-225} + q^{-227} - q^{-235} }[/math] |
| 6 | [math]\displaystyle{ q^{-18} + q^{-24} + q^{-26} + q^{-28} + q^{-32} - q^{-36} + q^{-38} +2 q^{-40} +3 q^{-42} + q^{-44} +2 q^{-46} - q^{-48} -4 q^{-50} -3 q^{-52} - q^{-54} +3 q^{-56} +3 q^{-58} +7 q^{-60} +4 q^{-62} -2 q^{-64} -5 q^{-66} -6 q^{-68} -4 q^{-70} -3 q^{-72} +6 q^{-74} +9 q^{-76} +8 q^{-78} +3 q^{-80} -2 q^{-82} -8 q^{-84} -14 q^{-86} -5 q^{-88} +2 q^{-90} +10 q^{-92} +13 q^{-94} +10 q^{-96} - q^{-98} -16 q^{-100} -16 q^{-102} -12 q^{-104} + q^{-106} +13 q^{-108} +21 q^{-110} +12 q^{-112} -6 q^{-114} -16 q^{-116} -21 q^{-118} -10 q^{-120} +5 q^{-122} +21 q^{-124} +19 q^{-126} +2 q^{-128} -11 q^{-130} -21 q^{-132} -15 q^{-134} - q^{-136} +16 q^{-138} +17 q^{-140} +5 q^{-142} -5 q^{-144} -14 q^{-146} -11 q^{-148} -2 q^{-150} +11 q^{-152} +11 q^{-154} +2 q^{-156} -3 q^{-158} -8 q^{-160} -5 q^{-162} - q^{-164} +6 q^{-166} +5 q^{-168} -2 q^{-174} + q^{-178} +3 q^{-180} +2 q^{-182} -2 q^{-190} -2 q^{-192} -2 q^{-194} +2 q^{-196} +8 q^{-198} +3 q^{-200} +2 q^{-202} -3 q^{-204} -7 q^{-206} -8 q^{-208} - q^{-210} +14 q^{-212} +12 q^{-214} +9 q^{-216} -3 q^{-218} -16 q^{-220} -23 q^{-222} -11 q^{-224} +12 q^{-226} +19 q^{-228} +20 q^{-230} +4 q^{-232} -15 q^{-234} -28 q^{-236} -20 q^{-238} +4 q^{-240} +16 q^{-242} +24 q^{-244} +14 q^{-246} -2 q^{-248} -18 q^{-250} -20 q^{-252} -6 q^{-254} +3 q^{-256} +13 q^{-258} +14 q^{-260} +8 q^{-262} -4 q^{-264} -9 q^{-266} -7 q^{-268} -6 q^{-270} + q^{-272} +6 q^{-274} +6 q^{-276} + q^{-278} - q^{-280} - q^{-282} -4 q^{-284} -2 q^{-286} + q^{-288} +3 q^{-290} + q^{-292} + q^{-294} + q^{-296} -2 q^{-298} - q^{-300} + q^{-304} + q^{-310} - q^{-312} - q^{-314} - q^{-316} + q^{-324} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{-6} + q^{-10} + q^{-14} +2 q^{-16} + q^{-18} + q^{-20} - q^{-22} - q^{-24} - q^{-26} - q^{-28} }[/math] |
| 1,1 | [math]\displaystyle{ q^{-12} +2 q^{-16} -2 q^{-18} +6 q^{-20} +8 q^{-24} -2 q^{-26} +5 q^{-28} +2 q^{-34} -4 q^{-36} +6 q^{-38} -8 q^{-40} +4 q^{-42} -11 q^{-44} +4 q^{-46} -8 q^{-48} +4 q^{-50} - q^{-52} +4 q^{-56} -2 q^{-58} +3 q^{-60} -6 q^{-62} +2 q^{-64} -2 q^{-66} +2 q^{-68} -2 q^{-70} +2 q^{-72} + q^{-76} }[/math] |
| 2,0 | [math]\displaystyle{ q^{-12} + q^{-18} +2 q^{-20} + q^{-22} + q^{-24} +2 q^{-26} +2 q^{-28} + q^{-30} + q^{-32} + q^{-34} +2 q^{-40} - q^{-46} - q^{-48} -3 q^{-50} -3 q^{-52} -2 q^{-54} -2 q^{-56} -2 q^{-58} - q^{-60} + q^{-62} + q^{-64} +2 q^{-66} + q^{-68} + q^{-70} }[/math] |
| 3,0 | [math]\displaystyle{ q^{-18} +2 q^{-26} +3 q^{-28} +2 q^{-30} +2 q^{-36} +4 q^{-38} +2 q^{-40} +3 q^{-46} +4 q^{-48} +2 q^{-50} + q^{-54} +2 q^{-56} +2 q^{-58} - q^{-64} - q^{-66} -4 q^{-68} -4 q^{-70} -2 q^{-72} -3 q^{-74} -3 q^{-76} -5 q^{-78} -2 q^{-80} - q^{-82} -3 q^{-86} -3 q^{-88} - q^{-90} + q^{-92} -2 q^{-96} - q^{-98} +2 q^{-100} +4 q^{-102} +4 q^{-104} +3 q^{-106} +2 q^{-108} +3 q^{-110} +2 q^{-112} +2 q^{-114} - q^{-118} -2 q^{-120} -2 q^{-122} - q^{-124} - q^{-126} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{-12} + q^{-16} + q^{-18} +2 q^{-22} +3 q^{-24} + q^{-26} +3 q^{-28} +3 q^{-30} + q^{-32} -2 q^{-38} -2 q^{-40} -3 q^{-42} - q^{-44} -2 q^{-46} -2 q^{-48} + q^{-50} - q^{-52} - q^{-54} + q^{-56} + q^{-58} + q^{-62} }[/math] |
| 1,0,0 | [math]\displaystyle{ q^{-9} + q^{-13} + q^{-17} + q^{-19} +2 q^{-21} +2 q^{-23} + q^{-25} + q^{-27} - q^{-29} - q^{-31} -2 q^{-33} - q^{-35} - q^{-37} }[/math] |
| 1,0,1 | [math]\displaystyle{ q^{-18} +2 q^{-22} + q^{-26} +5 q^{-28} +2 q^{-30} +9 q^{-32} +5 q^{-34} +6 q^{-36} +8 q^{-38} +9 q^{-42} - q^{-44} + q^{-48} -8 q^{-50} -4 q^{-52} -7 q^{-54} -8 q^{-56} -7 q^{-58} -3 q^{-60} -6 q^{-62} - q^{-66} +7 q^{-70} -2 q^{-72} +7 q^{-74} +2 q^{-76} -3 q^{-78} +3 q^{-80} -4 q^{-82} - q^{-84} + q^{-86} -2 q^{-88} + q^{-90} - q^{-92} +2 q^{-96} + q^{-100} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{-18} + q^{-22} + q^{-24} + q^{-26} + q^{-28} +3 q^{-30} +2 q^{-32} +2 q^{-34} +4 q^{-36} +4 q^{-38} +3 q^{-40} +3 q^{-42} +4 q^{-44} +3 q^{-46} -2 q^{-52} -5 q^{-54} -6 q^{-56} -5 q^{-58} -6 q^{-60} -5 q^{-62} -2 q^{-64} - q^{-66} + q^{-70} +3 q^{-72} +2 q^{-74} + q^{-76} + q^{-78} + q^{-80} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^{-12} + q^{-16} + q^{-20} + q^{-22} + q^{-24} +2 q^{-26} +2 q^{-28} +2 q^{-30} + q^{-32} + q^{-34} - q^{-36} - q^{-38} -2 q^{-40} -2 q^{-42} - q^{-44} - q^{-46} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{-12} + q^{-16} - q^{-18} +2 q^{-20} + q^{-24} + q^{-26} + q^{-28} + q^{-30} - q^{-32} +2 q^{-34} -2 q^{-36} +2 q^{-38} -2 q^{-40} + q^{-42} - q^{-44} - q^{-50} + q^{-52} - q^{-54} + q^{-56} - q^{-58} - q^{-62} }[/math] |
| 1,0 | [math]\displaystyle{ q^{-18} + q^{-26} + q^{-28} - q^{-32} + q^{-34} +2 q^{-36} +2 q^{-38} + q^{-42} + q^{-44} +2 q^{-46} + q^{-48} + q^{-54} - q^{-58} - q^{-60} - q^{-66} -2 q^{-68} - q^{-70} - q^{-74} -2 q^{-76} - q^{-78} + q^{-80} - q^{-84} - q^{-86} + q^{-90} + q^{-92} + q^{-100} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{-18} + q^{-22} +2 q^{-26} +2 q^{-30} + q^{-32} +2 q^{-34} +2 q^{-36} +2 q^{-38} +3 q^{-40} +3 q^{-42} +3 q^{-44} +2 q^{-48} -2 q^{-50} -4 q^{-54} -2 q^{-56} -4 q^{-58} - q^{-60} -2 q^{-62} - q^{-64} - q^{-66} - q^{-68} + q^{-70} - q^{-72} - q^{-76} + q^{-78} + q^{-82} + q^{-86} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{-30} + q^{-34} - q^{-36} + q^{-38} + q^{-40} - q^{-42} +3 q^{-44} - q^{-46} +2 q^{-48} - q^{-52} +2 q^{-54} -2 q^{-56} +2 q^{-58} - q^{-62} +2 q^{-64} + q^{-68} +2 q^{-70} - q^{-72} +2 q^{-74} +3 q^{-80} -2 q^{-82} +3 q^{-84} +2 q^{-88} + q^{-90} -3 q^{-92} +3 q^{-94} -3 q^{-96} +2 q^{-98} - q^{-100} -3 q^{-102} + q^{-104} - q^{-106} - q^{-108} -3 q^{-112} - q^{-114} - q^{-116} -2 q^{-118} +2 q^{-120} -3 q^{-122} + q^{-124} - q^{-128} + q^{-130} - q^{-132} + q^{-134} - q^{-136} + q^{-138} - q^{-142} + q^{-144} + q^{-148} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 3"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^2+2 t^{-2} -3 t-3 t^{-1} +3 }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^4+5 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 13, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^9+q^8-2 q^7+3 q^6-2 q^5+2 q^4-q^3+q^2 }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^2 a^{-8} -2 a^{-8} +z^4 a^{-6} +3 z^2 a^{-6} +2 a^{-6} +z^4 a^{-4} +3 z^2 a^{-4} + a^{-4} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^3 a^{-11} -2 z a^{-11} +z^4 a^{-10} -z^2 a^{-10} +z^5 a^{-9} -z^3 a^{-9} +z a^{-9} +z^6 a^{-8} -3 z^4 a^{-8} +6 z^2 a^{-8} -2 a^{-8} +2 z^5 a^{-7} -4 z^3 a^{-7} +3 z a^{-7} +z^6 a^{-6} -3 z^4 a^{-6} +4 z^2 a^{-6} -2 a^{-6} +z^5 a^{-5} -2 z^3 a^{-5} +z^4 a^{-4} -3 z^2 a^{-4} + a^{-4} }[/math] |
Vassiliev invariants
| V2 and V3: | (5, 11) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of 7 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ | |||||||||
| 19 | 1 | -1 | ||||||||||||||||
| 17 | 0 | |||||||||||||||||
| 15 | 2 | 1 | -1 | |||||||||||||||
| 13 | 1 | 1 | ||||||||||||||||
| 11 | 1 | 2 | 1 | |||||||||||||||
| 9 | 1 | 1 | 0 | |||||||||||||||
| 7 | 1 | 1 | ||||||||||||||||
| 5 | 1 | 1 | 0 | |||||||||||||||
| 3 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[7, 3]] |
Out[2]= | 7 |
In[3]:= | PD[Knot[7, 3]] |
Out[3]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 1, 7], X[8, 14, 9, 13], X[12, 6, 13, 5], X[2, 10, 3, 9], X[4, 12, 5, 11]] |
In[4]:= | GaussCode[Knot[7, 3]] |
Out[4]= | GaussCode[1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3] |
In[5]:= | BR[Knot[7, 3]] |
Out[5]= | BR[3, {1, 1, 1, 1, 1, 2, -1, 2}] |
In[6]:= | alex = Alexander[Knot[7, 3]][t] |
Out[6]= | 2 3 2 |
In[7]:= | Conway[Knot[7, 3]][z] |
Out[7]= | 2 4 1 + 5 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[7, 3]} |
In[9]:= | {KnotDet[Knot[7, 3]], KnotSignature[Knot[7, 3]]} |
Out[9]= | {13, 4} |
In[10]:= | J=Jones[Knot[7, 3]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 q - q + 2 q - 2 q + 3 q - 2 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[7, 3]} |
In[12]:= | A2Invariant[Knot[7, 3]][q] |
Out[12]= | 6 10 14 16 18 20 22 24 26 28 q + q + q + 2 q + q + q - q - q - q - q |
In[13]:= | Kauffman[Knot[7, 3]][a, z] |
Out[13]= | 2 2 2 2 3 3 |
In[14]:= | {Vassiliev[2][Knot[7, 3]], Vassiliev[3][Knot[7, 3]]} |
Out[14]= | {0, 11} |
In[15]:= | Kh[Knot[7, 3]][q, t] |
Out[15]= | 3 5 5 7 2 9 2 9 3 11 3 11 4 13 4 |


