7 3

From Knot Atlas
Jump to navigationJump to search

7 2.gif

7_2

7 4.gif

7_4

7 3.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 7 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 3 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X14,8,1,7 X8,14,9,13 X12,6,13,5 X2,10,3,9 X4,12,5,11
Gauss code 1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3
Dowker-Thistlethwaite code 6 10 12 14 2 4 8
Conway Notation [43]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 8, width is 3,

Braid index is 3

7 3 ML.gif 7 3 AP.gif
[{4, 9}, {3, 5}, {6, 4}, {5, 8}, {2, 6}, {9, 7}, {1, 3}, {8, 2}, {7, 1}]

[edit Notes on presentations of 7 3]

Knot 7_3.
A graph, knot 7_3.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{3,4\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [math]\displaystyle{ \text{$\$$Failed} }[/math]
Hyperbolic Volume 4.59213
A-Polynomial See Data:7 3/A-polynomial

[edit Notes for 7 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ \textrm{ConcordanceGenus}(\textrm{Knot}(7,3)) }[/math]
Rasmussen s-Invariant -4

[edit Notes for 7 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^2+2 t^{-2} -3 t-3 t^{-1} +3 }[/math]
Conway polynomial [math]\displaystyle{ 2 z^4+5 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 13, 4 }
Jones polynomial [math]\displaystyle{ -q^9+q^8-2 q^7+3 q^6-2 q^5+2 q^4-q^3+q^2 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{-8} -2 a^{-8} +z^4 a^{-6} +3 z^2 a^{-6} +2 a^{-6} +z^4 a^{-4} +3 z^2 a^{-4} + a^{-4} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^3 a^{-11} -2 z a^{-11} +z^4 a^{-10} -z^2 a^{-10} +z^5 a^{-9} -z^3 a^{-9} +z a^{-9} +z^6 a^{-8} -3 z^4 a^{-8} +6 z^2 a^{-8} -2 a^{-8} +2 z^5 a^{-7} -4 z^3 a^{-7} +3 z a^{-7} +z^6 a^{-6} -3 z^4 a^{-6} +4 z^2 a^{-6} -2 a^{-6} +z^5 a^{-5} -2 z^3 a^{-5} +z^4 a^{-4} -3 z^2 a^{-4} + a^{-4} }[/math]
The A2 invariant [math]\displaystyle{ q^{-6} + q^{-10} + q^{-14} +2 q^{-16} + q^{-18} + q^{-20} - q^{-22} - q^{-24} - q^{-26} - q^{-28} }[/math]
The G2 invariant [math]\displaystyle{ q^{-30} + q^{-34} - q^{-36} + q^{-38} + q^{-40} - q^{-42} +3 q^{-44} - q^{-46} +2 q^{-48} - q^{-52} +2 q^{-54} -2 q^{-56} +2 q^{-58} - q^{-62} +2 q^{-64} + q^{-68} +2 q^{-70} - q^{-72} +2 q^{-74} +3 q^{-80} -2 q^{-82} +3 q^{-84} +2 q^{-88} + q^{-90} -3 q^{-92} +3 q^{-94} -3 q^{-96} +2 q^{-98} - q^{-100} -3 q^{-102} + q^{-104} - q^{-106} - q^{-108} -3 q^{-112} - q^{-114} - q^{-116} -2 q^{-118} +2 q^{-120} -3 q^{-122} + q^{-124} - q^{-128} + q^{-130} - q^{-132} + q^{-134} - q^{-136} + q^{-138} - q^{-142} + q^{-144} + q^{-148} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (5, 11)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 20 }[/math] [math]\displaystyle{ 88 }[/math] [math]\displaystyle{ 200 }[/math] [math]\displaystyle{ \frac{1510}{3} }[/math] [math]\displaystyle{ \frac{242}{3} }[/math] [math]\displaystyle{ 1760 }[/math] [math]\displaystyle{ \frac{9520}{3} }[/math] [math]\displaystyle{ \frac{1696}{3} }[/math] [math]\displaystyle{ 440 }[/math] [math]\displaystyle{ \frac{4000}{3} }[/math] [math]\displaystyle{ 3872 }[/math] [math]\displaystyle{ \frac{30200}{3} }[/math] [math]\displaystyle{ \frac{4840}{3} }[/math] [math]\displaystyle{ \frac{121855}{6} }[/math] [math]\displaystyle{ 382 }[/math] [math]\displaystyle{ \frac{73862}{9} }[/math] [math]\displaystyle{ \frac{2437}{18} }[/math] [math]\displaystyle{ \frac{6559}{6} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of 7 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567χ
19       1-1
17        0
15     21 -1
13    1   1
11   12   1
9  11    0
7  1     1
511      0
31       1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials