8 16: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=8_16}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=8|k=16|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,5,-6,2,-1,4,-5,6,-7,3,-4,8,-2,7,-3/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[8, 16]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 16]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 7, 13, 8], |
|||
X[8, 3, 9, 4], X[4, 9, 5, 10], X[10, 15, 11, 16], X[2, 14, 3, 13]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 16]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[8, 16]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 16]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 8 2 3 |
|||
-9 + t - -- + - + 8 t - 4 t + t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 16]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z + 2 z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 16], Knot[10, 156], Knot[11, NonAlternating, 15], |
|||
Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 16]], KnotSignature[Knot[8, 16]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{35, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[8, 16]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 5 6 6 6 2 |
|||
-4 - q + -- - -- + -- - -- + - + 3 q - q |
|||
5 4 3 2 q |
|||
q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 16], Knot[10, 156]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 16]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 -14 -10 -8 2 -4 2 4 6 |
|||
1 - q + q - q + q - q + -- - q + -- + q - q |
|||
6 2 |
|||
q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 16]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 z 3 5 2 2 2 4 2 |
|||
-2 a - a + - + 3 a z + 4 a z + 2 a z + 5 z + 10 a z + 4 a z - |
|||
a |
|||
3 |
|||
6 2 2 z 3 3 3 5 3 7 3 4 |
|||
a z - ---- - 6 a z - 10 a z - 5 a z + a z - 8 z - |
|||
a |
|||
5 |
|||
2 4 4 4 6 4 z 5 3 5 5 5 6 |
|||
18 a z - 7 a z + 3 a z + -- - a z + 3 a z + 5 a z + 3 z + |
|||
a |
|||
2 6 4 6 7 3 7 |
|||
8 a z + 5 a z + 2 a z + 2 a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 16]], Vassiliev[3][Knot[8, 16]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 16]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 4 1 2 1 3 2 3 3 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
|||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
|||
q q t q t q t q t q t q t q t |
|||
3 3 2 t 2 3 2 5 3 |
|||
---- + ---- + --- + 2 q t + q t + 2 q t + q t |
|||
5 3 q |
|||
q t q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 21:48, 27 August 2005
|
|
![]() |
Visit 8 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 16's page at Knotilus! Visit 8 16's page at the original Knot Atlas! |
8 16 Quick Notes |
Knot presentations
Planar diagram presentation | X6271 X14,6,15,5 X16,11,1,12 X12,7,13,8 X8394 X4,9,5,10 X10,15,11,16 X2,14,3,13 |
Gauss code | 1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3 |
Dowker-Thistlethwaite code | 6 8 14 12 4 16 2 10 |
Conway Notation | [.2.20] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+2 z^4+z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 35, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+3 q-4+6 q^{-1} -6 q^{-2} +6 q^{-3} -5 q^{-4} +3 q^{-5} - q^{-6} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^7+3 z^4 a^6-z^2 a^6+5 z^5 a^5-5 z^3 a^5+2 z a^5+5 z^6 a^4-7 z^4 a^4+4 z^2 a^4-a^4+2 z^7 a^3+3 z^5 a^3-10 z^3 a^3+4 z a^3+8 z^6 a^2-18 z^4 a^2+10 z^2 a^2-2 a^2+2 z^7 a-z^5 a-6 z^3 a+3 z a+3 z^6-8 z^4+5 z^2+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} } |
The A2 invariant | |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}-2 q^{98}+3 q^{96}-4 q^{94}+2 q^{92}-q^{90}-2 q^{88}+9 q^{86}-12 q^{84}+15 q^{82}-14 q^{80}+7 q^{78}+2 q^{76}-16 q^{74}+28 q^{72}-31 q^{70}+24 q^{68}-10 q^{66}-11 q^{64}+26 q^{62}-30 q^{60}+21 q^{58}-5 q^{56}-15 q^{54}+23 q^{52}-19 q^{50}+2 q^{48}+22 q^{46}-36 q^{44}+36 q^{42}-20 q^{40}-4 q^{38}+30 q^{36}-45 q^{34}+46 q^{32}-33 q^{30}+12 q^{28}+14 q^{26}-32 q^{24}+39 q^{22}-30 q^{20}+14 q^{18}+5 q^{16}-20 q^{14}+24 q^{12}-14 q^{10}-q^8+21 q^6-29 q^4+26 q^2-6-17 q^{-2} +35 q^{-4} -37 q^{-6} +28 q^{-8} -10 q^{-10} -12 q^{-12} +24 q^{-14} -25 q^{-16} +20 q^{-18} -9 q^{-20} -2 q^{-22} +6 q^{-24} -8 q^{-26} +5 q^{-28} -2 q^{-30} + q^{-32} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+2 q^{11}-2 q^9+q^7+2 q- q^{-1} +2 q^{-3} - q^{-5} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-2 q^{34}+5 q^{30}-7 q^{28}-2 q^{26}+11 q^{24}-6 q^{22}-5 q^{20}+8 q^{18}-q^{16}-5 q^{14}+q^{12}+5 q^{10}-2 q^8-5 q^6+7 q^4+2 q^2-9+6 q^{-2} +6 q^{-4} -8 q^{-6} + q^{-8} +6 q^{-10} -3 q^{-12} -2 q^{-14} + q^{-16} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{69}+2 q^{67}-3 q^{63}+q^{61}+6 q^{59}-16 q^{55}+26 q^{51}+6 q^{49}-33 q^{47}-19 q^{45}+35 q^{43}+28 q^{41}-30 q^{39}-32 q^{37}+19 q^{35}+34 q^{33}-5 q^{31}-28 q^{29}-8 q^{27}+20 q^{25}+15 q^{23}-12 q^{21}-24 q^{19}+5 q^{17}+29 q^{15}+2 q^{13}-32 q^{11}-6 q^9+34 q^7+16 q^5-32 q^3-25 q+28 q^{-1} +31 q^{-3} -16 q^{-5} -35 q^{-7} +5 q^{-9} +33 q^{-11} +7 q^{-13} -24 q^{-15} -13 q^{-17} +12 q^{-19} +15 q^{-21} -4 q^{-23} -9 q^{-25} -2 q^{-27} +3 q^{-29} +2 q^{-31} - q^{-33} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{112}-2 q^{110}+3 q^{106}-3 q^{104}-4 q^{100}+8 q^{98}+13 q^{96}-16 q^{94}-17 q^{92}-17 q^{90}+36 q^{88}+65 q^{86}-17 q^{84}-75 q^{82}-91 q^{80}+44 q^{78}+160 q^{76}+60 q^{74}-91 q^{72}-198 q^{70}-38 q^{68}+185 q^{66}+163 q^{64}-9 q^{62}-209 q^{60}-134 q^{58}+86 q^{56}+165 q^{54}+89 q^{52}-103 q^{50}-139 q^{48}-29 q^{46}+81 q^{44}+115 q^{42}+12 q^{40}-83 q^{38}-95 q^{36}+3 q^{34}+104 q^{32}+79 q^{30}-45 q^{28}-130 q^{26}-38 q^{24}+99 q^{22}+130 q^{20}-20 q^{18}-163 q^{16}-79 q^{14}+87 q^{12}+180 q^{10}+32 q^8-165 q^6-139 q^4+17 q^2+193+119 q^{-2} -89 q^{-4} -164 q^{-6} -94 q^{-8} +114 q^{-10} +158 q^{-12} +35 q^{-14} -91 q^{-16} -144 q^{-18} -9 q^{-20} +90 q^{-22} +89 q^{-24} +18 q^{-26} -80 q^{-28} -56 q^{-30} -4 q^{-32} +41 q^{-34} +45 q^{-36} -6 q^{-38} -20 q^{-40} -20 q^{-42} -3 q^{-44} +12 q^{-46} +5 q^{-48} +2 q^{-50} -3 q^{-52} -2 q^{-54} + q^{-56} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{165}+2 q^{163}-3 q^{159}+3 q^{157}+2 q^{155}-2 q^{153}-4 q^{151}-5 q^{149}+16 q^{145}+23 q^{143}-5 q^{141}-47 q^{139}-56 q^{137}+q^{135}+88 q^{133}+133 q^{131}+54 q^{129}-148 q^{127}-270 q^{125}-158 q^{123}+161 q^{121}+436 q^{119}+366 q^{117}-87 q^{115}-593 q^{113}-639 q^{111}-92 q^{109}+642 q^{107}+901 q^{105}+381 q^{103}-545 q^{101}-1081 q^{99}-686 q^{97}+319 q^{95}+1079 q^{93}+926 q^{91}-9 q^{89}-909 q^{87}-1027 q^{85}-283 q^{83}+632 q^{81}+953 q^{79}+492 q^{77}-306 q^{75}-772 q^{73}-588 q^{71}+26 q^{69}+532 q^{67}+573 q^{65}+188 q^{63}-301 q^{61}-515 q^{59}-314 q^{57}+121 q^{55}+446 q^{53}+394 q^{51}-6 q^{49}-406 q^{47}-447 q^{45}-64 q^{43}+409 q^{41}+512 q^{39}+102 q^{37}-444 q^{35}-591 q^{33}-159 q^{31}+485 q^{29}+704 q^{27}+242 q^{25}-502 q^{23}-819 q^{21}-375 q^{19}+450 q^{17}+918 q^{15}+557 q^{13}-325 q^{11}-945 q^9-746 q^7+108 q^5+868 q^3+905 q+178 q^{-1} -685 q^{-3} -956 q^{-5} -454 q^{-7} +383 q^{-9} +878 q^{-11} +668 q^{-13} -46 q^{-15} -663 q^{-17} -733 q^{-19} -257 q^{-21} +361 q^{-23} +642 q^{-25} +439 q^{-27} -53 q^{-29} -440 q^{-31} -465 q^{-33} -162 q^{-35} +194 q^{-37} +354 q^{-39} +259 q^{-41} +4 q^{-43} -201 q^{-45} -224 q^{-47} -99 q^{-49} +52 q^{-51} +134 q^{-53} +115 q^{-55} +21 q^{-57} -52 q^{-59} -68 q^{-61} -39 q^{-63} +26 q^{-67} +28 q^{-69} +8 q^{-71} -5 q^{-73} -8 q^{-75} -5 q^{-77} -2 q^{-79} +3 q^{-81} +2 q^{-83} - q^{-85} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{228}-2 q^{226}+3 q^{222}-3 q^{220}-2 q^{218}+10 q^{214}+q^{212}-8 q^{210}-19 q^{206}-10 q^{204}+21 q^{202}+57 q^{200}+33 q^{198}-31 q^{196}-73 q^{194}-135 q^{192}-75 q^{190}+106 q^{188}+304 q^{186}+281 q^{184}+25 q^{182}-308 q^{180}-659 q^{178}-562 q^{176}+42 q^{174}+883 q^{172}+1266 q^{170}+813 q^{168}-284 q^{166}-1689 q^{164}-2162 q^{162}-1163 q^{160}+975 q^{158}+2814 q^{156}+3056 q^{154}+1343 q^{152}-1837 q^{150}-4170 q^{148}-3998 q^{146}-992 q^{144}+2915 q^{142}+5291 q^{140}+4527 q^{138}+469 q^{136}-4039 q^{134}-6182 q^{132}-4287 q^{130}+289 q^{128}+4762 q^{126}+6374 q^{124}+3726 q^{122}-1108 q^{120}-5157 q^{118}-5719 q^{116}-2863 q^{114}+1612 q^{112}+4916 q^{110}+4828 q^{108}+1928 q^{106}-1918 q^{104}-4121 q^{102}-3794 q^{100}-1232 q^{98}+1821 q^{96}+3366 q^{94}+2838 q^{92}+684 q^{90}-1514 q^{88}-2714 q^{86}-2150 q^{84}-380 q^{82}+1434 q^{80}+2265 q^{78}+1615 q^{76}+57 q^{74}-1565 q^{72}-2025 q^{70}-1146 q^{68}+573 q^{66}+1878 q^{64}+1816 q^{62}+420 q^{60}-1428 q^{58}-2213 q^{56}-1420 q^{54}+671 q^{52}+2378 q^{50}+2383 q^{48}+523 q^{46}-1971 q^{44}-3147 q^{42}-2159 q^{40}+730 q^{38}+3282 q^{36}+3646 q^{34}+1333 q^{32}-2119 q^{30}-4283 q^{28}-3695 q^{26}-273 q^{24}+3444 q^{22}+5009 q^{20}+3166 q^{18}-818 q^{16}-4378 q^{14}-5287 q^{12}-2546 q^{10}+1786 q^8+5046 q^6+5012 q^4+1936 q^2-2346-5245 q^{-2} -4675 q^{-4} -1385 q^{-6} +2685 q^{-8} +4881 q^{-10} +4252 q^{-12} +1110 q^{-14} -2616 q^{-16} -4443 q^{-18} -3709 q^{-20} -876 q^{-22} +2111 q^{-24} +3844 q^{-26} +3229 q^{-28} +835 q^{-30} -1658 q^{-32} -3060 q^{-34} -2633 q^{-36} -978 q^{-38} +1160 q^{-40} +2332 q^{-42} +2106 q^{-44} +900 q^{-46} -623 q^{-48} -1572 q^{-50} -1682 q^{-52} -795 q^{-54} +263 q^{-56} +992 q^{-58} +1131 q^{-60} +696 q^{-62} +16 q^{-64} -602 q^{-66} -702 q^{-68} -501 q^{-70} -106 q^{-72} +244 q^{-74} +412 q^{-76} +347 q^{-78} +92 q^{-80} -78 q^{-82} -190 q^{-84} -179 q^{-86} -97 q^{-88} +17 q^{-90} +83 q^{-92} +70 q^{-94} +51 q^{-96} +7 q^{-98} -20 q^{-100} -34 q^{-102} -16 q^{-104} + q^{-108} +8 q^{-110} +5 q^{-112} +2 q^{-114} -3 q^{-116} -2 q^{-118} + q^{-120} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{18}+q^{16}-q^{14}+q^{10}-q^8+2 q^6-q^4+2 q^2+1+ q^{-4} - q^{-6} } |
1,1 | |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-q^{44}+2 q^{40}-2 q^{38}-2 q^{36}+3 q^{32}-2 q^{30}-4 q^{28}+4 q^{26}+2 q^{24}-3 q^{22}+4 q^{18}-q^{16}-q^{14}+2 q^{12}-3 q^8-q^6+4 q^4-2 q^2+6 q^{-2} +3 q^{-4} -2 q^{-6} +2 q^{-10} -3 q^{-14} - q^{-16} + q^{-18} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-2 q^{40}-q^{38}+5 q^{36}-3 q^{34}-3 q^{32}+8 q^{30}-4 q^{28}-5 q^{26}+6 q^{24}-4 q^{22}-4 q^{20}+2 q^{18}+q^{16}-q^{12}+5 q^{10}+4 q^8-5 q^6+4 q^4+6 q^2-6+2 q^{-2} +4 q^{-4} -6 q^{-6} +2 q^{-8} + q^{-10} -2 q^{-12} + q^{-14} } |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{23}+q^{21}-2 q^{19}+q^{17}-q^{15}+q^{13}+q^9+q^7+2 q^3+2 q^{-1} - q^{-3} + q^{-5} - q^{-7} } |
1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-4 q^{66}+6 q^{64}-2 q^{62}-7 q^{60}+19 q^{58}-24 q^{56}+9 q^{54}+19 q^{52}-46 q^{50}+54 q^{48}-25 q^{46}-26 q^{44}+76 q^{42}-97 q^{40}+71 q^{38}-10 q^{36}-66 q^{34}+109 q^{32}-114 q^{30}+64 q^{28}-2 q^{26}-41 q^{24}+53 q^{22}-21 q^{20}+3 q^{18}+3 q^{16}+30 q^{14}-75 q^{12}+94 q^{10}-80 q^8+18 q^6+56 q^4-104 q^2+124-82 q^{-2} +36 q^{-4} +28 q^{-6} -59 q^{-8} +60 q^{-10} -43 q^{-12} +10 q^{-14} +7 q^{-16} -14 q^{-18} +10 q^{-20} -4 q^{-22} + q^{-24} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-q^{50}-2 q^{48}+3 q^{46}+q^{44}-5 q^{42}+2 q^{40}+6 q^{38}-q^{36}-4 q^{34}+3 q^{32}-9 q^{28}-5 q^{26}+3 q^{24}-4 q^{22}-5 q^{20}+10 q^{18}+4 q^{16}-2 q^{14}+7 q^{12}+9 q^{10}-2 q^8-q^6+5 q^4+2 q^2-5- q^{-2} +3 q^{-4} -2 q^{-6} -2 q^{-8} +2 q^{-10} - q^{-14} + q^{-16} } |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{28}+q^{26}-2 q^{24}-q^{18}+q^{16}+2 q^{12}+2 q^8+2 q^4+1+ q^{-2} - q^{-4} + q^{-6} - q^{-8} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{42}+2 q^{40}-3 q^{38}+5 q^{36}-7 q^{34}+7 q^{32}-8 q^{30}+6 q^{28}-3 q^{26}+4 q^{22}-6 q^{20}+10 q^{18}-13 q^{16}+14 q^{14}-13 q^{12}+11 q^{10}-8 q^8+5 q^6-2 q^2+6-6 q^{-2} +8 q^{-4} -6 q^{-6} +6 q^{-8} -5 q^{-10} +2 q^{-12} - q^{-14} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{64}-2 q^{62}+q^{60}+5 q^{58}+2 q^{56}-5 q^{54}-5 q^{52}+2 q^{50}+8 q^{48}+q^{46}-8 q^{44}-4 q^{42}+5 q^{40}+5 q^{38}-4 q^{36}-6 q^{34}+q^{32}+6 q^{30}-6 q^{26}-q^{24}+5 q^{22}+3 q^{20}-3 q^{18}-3 q^{16}+4 q^{14}+5 q^{12}-2 q^{10}-6 q^8+2 q^6+8 q^4+4 q^2-6-6 q^{-2} +4 q^{-4} +8 q^{-6} - q^{-8} -6 q^{-10} -3 q^{-12} +4 q^{-14} +3 q^{-16} -2 q^{-18} -2 q^{-20} + q^{-24} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}-2 q^{56}+q^{54}-2 q^{52}+5 q^{50}-5 q^{48}+4 q^{46}-5 q^{44}+8 q^{42}-5 q^{40}+3 q^{38}-4 q^{36}+q^{32}-5 q^{30}+2 q^{28}-9 q^{26}+9 q^{24}-9 q^{22}+11 q^{20}-9 q^{18}+12 q^{16}-5 q^{14}+10 q^{12}-4 q^{10}+4 q^8+q^6+2 q^2-4+6 q^{-2} -6 q^{-4} +5 q^{-6} -6 q^{-8} +5 q^{-10} -4 q^{-12} +3 q^{-14} -2 q^{-16} + q^{-18} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 16"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-4 t^2+8 t-9+8 t^{-1} -4 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+2 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+3 q-4+6 q^{-1} -6 q^{-2} +6 q^{-3} -5 q^{-4} +3 q^{-5} - q^{-6} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^6-a^4 z^4+4 a^2 z^4-z^4-2 a^4 z^2+5 a^2 z^2-2 z^2-a^4+2 a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^7+3 z^4 a^6-z^2 a^6+5 z^5 a^5-5 z^3 a^5+2 z a^5+5 z^6 a^4-7 z^4 a^4+4 z^2 a^4-a^4+2 z^7 a^3+3 z^5 a^3-10 z^3 a^3+4 z a^3+8 z^6 a^2-18 z^4 a^2+10 z^2 a^2-2 a^2+2 z^7 a-z^5 a-6 z^3 a+3 z a+3 z^6-8 z^4+5 z^2+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} } |
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 8 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | χ | |||||||||
5 | 1 | -1 | |||||||||||||||||
3 | 2 | 2 | |||||||||||||||||
1 | 2 | 1 | -1 | ||||||||||||||||
-1 | 4 | 2 | 2 | ||||||||||||||||
-3 | 3 | 3 | 0 | ||||||||||||||||
-5 | 3 | 3 | 0 | ||||||||||||||||
-7 | 2 | 3 | 1 | ||||||||||||||||
-9 | 1 | 3 | -2 | ||||||||||||||||
-11 | 2 | 2 | |||||||||||||||||
-13 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[8, 16]] |
Out[2]= | 8 |
In[3]:= | PD[Knot[8, 16]] |
Out[3]= | PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 7, 13, 8], X[8, 3, 9, 4], X[4, 9, 5, 10], X[10, 15, 11, 16], X[2, 14, 3, 13]] |
In[4]:= | GaussCode[Knot[8, 16]] |
Out[4]= | GaussCode[1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3] |
In[5]:= | BR[Knot[8, 16]] |
Out[5]= | BR[3, {-1, -1, 2, -1, -1, 2, -1, 2}] |
In[6]:= | alex = Alexander[Knot[8, 16]][t] |
Out[6]= | -3 4 8 2 3 |
In[7]:= | Conway[Knot[8, 16]][z] |
Out[7]= | 2 4 6 1 + z + 2 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[8, 16], Knot[10, 156], Knot[11, NonAlternating, 15], Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]} |
In[9]:= | {KnotDet[Knot[8, 16]], KnotSignature[Knot[8, 16]]} |
Out[9]= | {35, -2} |
In[10]:= | J=Jones[Knot[8, 16]][q] |
Out[10]= | -6 3 5 6 6 6 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[8, 16], Knot[10, 156]} |
In[12]:= | A2Invariant[Knot[8, 16]][q] |
Out[12]= | -18 -16 -14 -10 -8 2 -4 2 4 6 |
In[13]:= | Kauffman[Knot[8, 16]][a, z] |
Out[13]= | 2 4 z 3 5 2 2 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[8, 16]], Vassiliev[3][Knot[8, 16]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[8, 16]][q, t] |
Out[15]= | 3 4 1 2 1 3 2 3 3 |