9 40: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
Line 1: Line 1:
<!-- -->
{{Template:Basic Knot Invariants|name=9_40}}

<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>

<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=40|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-6,7,-3,1,-2,8,-7,5,-4,2,-9,3,-5,6,-8,9/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>&nbsp;</td><td>4</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>7</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>7</td><td bgcolor=yellow>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>6</td><td bgcolor=yellow>6</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>5</td><td bgcolor=yellow>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-9</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>6</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-11</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>4</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>

{{Computer Talk Header}}

<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 40]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 40]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[7, 12, 8, 13], X[5, 15, 6, 14], X[11, 3, 12, 2],
X[15, 10, 16, 11], X[3, 16, 4, 17], X[9, 4, 10, 5], X[17, 9, 18, 8],
X[13, 18, 14, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 40]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -6, 7, -3, 1, -2, 8, -7, 5, -4, 2, -9, 3, -5, 6, -8, 9]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 40]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, 2, -1, -3, 2, -1, -3, 2, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 40]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 18 2 3
-23 + t - -- + -- + 18 t - 7 t + t
2 t
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 40]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 - z - z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 40], Knot[10, 59], Knot[11, NonAlternating, 66]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 40]], KnotSignature[Knot[9, 40]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{75, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 40]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 4 8 11 13 13 11 2
-8 + q - -- + -- - -- + -- - -- + -- + 5 q - q
6 5 4 3 2 q
q q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 40]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 40]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -20 2 3 -14 2 -10 3 -6 4 3
1 + q - q - --- + --- - q + --- + q - -- + q - -- + -- +
18 16 12 8 4 2
q q q q q q
4 6
3 q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 40]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 3 5 2 2 4 2 6 2 3
2 + 2 a + a - a z - a z + 3 a z + 7 a z + 4 a z + 6 a z +
3 3 5 3 7 3 4 2 4 4 4 6 4
14 a z + 6 a z - 2 a z - 7 z - 17 a z - 20 a z - 9 a z +
5
8 4 z 5 3 5 5 5 7 5 6
a z + -- - 15 a z - 32 a z - 12 a z + 4 a z + 5 z +
a
2 6 4 6 6 6 7 3 7 5 7 2 8
4 a z + 7 a z + 8 a z + 8 a z + 17 a z + 9 a z + 4 a z +
4 8
4 a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 40]], Vassiliev[3][Knot[9, 40]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 40]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 7 1 3 1 5 3 6 5
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
q q t q t q t q t q t q t q t
7 6 6 7 4 t 2 3 2 5 3
----- + ----- + ---- + ---- + --- + 4 q t + q t + 4 q t + q t
7 2 5 2 5 3 q
q t q t q t q t</nowiki></pre></td></tr>
</table>

Revision as of 20:50, 27 August 2005


9 39.gif

9_39

9 41.gif

9_41

9 40.gif Visit 9 40's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 40's page at Knotilus!

Visit 9 40's page at the original Knot Atlas!

9 40 Quick Notes



In three-fold symmetrical form
Symmetrical triangular form
(less open)


(alternate)
Variant
Obtained by an epitrochoid.
Cylindrical depiction.
9.40 as a geodesic line of the oblate spheroid


Photo of an alsatian chair, musée de l'oeuvre Notre Dame, Strasbourg, France.


Knot presentations

Planar diagram presentation X1627 X7,12,8,13 X5,15,6,14 X11,3,12,2 X15,10,16,11 X3,16,4,17 X9,4,10,5 X17,9,18,8 X13,18,14,1
Gauss code -1, 4, -6, 7, -3, 1, -2, 8, -7, 5, -4, 2, -9, 3, -5, 6, -8, 9
Dowker-Thistlethwaite code 6 16 14 12 4 2 18 10 8
Conway Notation [9*]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index 4
Nakanishi index 2
Maximal Thurston-Bennequin number [-9][-2]
Hyperbolic Volume 15.0183
A-Polynomial See Data:9 40/A-polynomial

[edit Notes for 9 40's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 40's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 75, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 40. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-6-5-4-3-2-10123χ
5         1-1
3        4 4
1       41 -3
-1      74  3
-3     75   -2
-5    66    0
-7   57     2
-9  36      -3
-11 15       4
-13 3        -3
-151         1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 40]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 40]]
Out[3]=  
PD[X[1, 6, 2, 7], X[7, 12, 8, 13], X[5, 15, 6, 14], X[11, 3, 12, 2], 
 X[15, 10, 16, 11], X[3, 16, 4, 17], X[9, 4, 10, 5], X[17, 9, 18, 8], 

X[13, 18, 14, 1]]
In[4]:=
GaussCode[Knot[9, 40]]
Out[4]=  
GaussCode[-1, 4, -6, 7, -3, 1, -2, 8, -7, 5, -4, 2, -9, 3, -5, 6, -8, 9]
In[5]:=
BR[Knot[9, 40]]
Out[5]=  
BR[4, {-1, 2, -1, -3, 2, -1, -3, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 40]][t]
Out[6]=  
       -3   7    18             2    3

-23 + t - -- + -- + 18 t - 7 t + t

            2   t
t
In[7]:=
Conway[Knot[9, 40]][z]
Out[7]=  
     2    4    6
1 - z  - z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 40], Knot[10, 59], Knot[11, NonAlternating, 66]}
In[9]:=
{KnotDet[Knot[9, 40]], KnotSignature[Knot[9, 40]]}
Out[9]=  
{75, -2}
In[10]:=
J=Jones[Knot[9, 40]][q]
Out[10]=  
      -7   4    8    11   13   13   11          2

-8 + q - -- + -- - -- + -- - -- + -- + 5 q - q

           6    5    4    3    2   q
q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 40]}
In[12]:=
A2Invariant[Knot[9, 40]][q]
Out[12]=  
     -22    -20    2     3     -14    2     -10   3     -6   4    3

1 + q - q - --- + --- - q + --- + q - -- + q - -- + -- +

                  18    16           12           8          4    2
                 q     q            q            q          q    q

    4    6
3 q - q
In[13]:=
Kauffman[Knot[9, 40]][a, z]
Out[13]=  
       2    4    3      5        2  2      4  2      6  2        3

2 + 2 a + a - a z - a z + 3 a z + 7 a z + 4 a z + 6 a z +

     3  3      5  3      7  3      4       2  4       4  4      6  4
 14 a  z  + 6 a  z  - 2 a  z  - 7 z  - 17 a  z  - 20 a  z  - 9 a  z  + 

          5
  8  4   z          5       3  5       5  5      7  5      6
 a  z  + -- - 15 a z  - 32 a  z  - 12 a  z  + 4 a  z  + 5 z  + 
         a

    2  6      4  6      6  6        7       3  7      5  7      2  8
 4 a  z  + 7 a  z  + 8 a  z  + 8 a z  + 17 a  z  + 9 a  z  + 4 a  z  + 

    4  8
4 a z
In[14]:=
{Vassiliev[2][Knot[9, 40]], Vassiliev[3][Knot[9, 40]]}
Out[14]=  
{0, 1}
In[15]:=
Kh[Knot[9, 40]][q, t]
Out[15]=  
5    7     1        3        1        5        3       6       5

-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +

3   q    15  6    13  5    11  5    11  4    9  4    9  3    7  3

q q t q t q t q t q t q t q t

   7       6      6      7     4 t              2      3  2    5  3
 ----- + ----- + ---- + ---- + --- + 4 q t + q t  + 4 q  t  + q  t
  7  2    5  2    5      3      q
q t q t q t q t