9 39
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 39's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8 |
| Gauss code | -1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3 |
| Dowker-Thistlethwaite code | 6 10 14 18 16 2 8 4 12 |
| Conway Notation | [2:2:20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{11, 6}, {2, 7}, {6, 1}, {8, 3}, {5, 2}, {7, 9}, {4, 8}, {10, 5}, {9, 11}, {3, 10}, {1, 4}] |
[edit Notes on presentations of 9 39]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3,11,4,10 X7,18,8,1 X17,13,18,12 X9,17,10,16 X5,15,6,14 X15,5,16,4 X11,3,12,2 X13,9,14,8 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 7, -6, 1, -3, 9, -5, 2, -8, 4, -9, 6, -7, 5, -4, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 18 16 2 8 4 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2:2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,1,2,-1,-3,-2,1,4,3,-2,3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 6}, {2, 7}, {6, 1}, {8, 3}, {5, 2}, {7, 9}, {4, 8}, {10, 5}, {9, 11}, {3, 10}, {1, 4}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 55, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n162,}
Same Jones Polynomial (up to mirroring, ): {K11n11, K11n112,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 39"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+14 t-21+14 t^{-1} -3 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+3 q^7-6 q^6+8 q^5-9 q^4+10 q^3-8 q^2+6 q-3+ q^{-1} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n162,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n11, K11n112,} |
Vassiliev invariants
| V2 and V3: | (2, 4) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 9 39. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23}-3 q^{22}+q^{21}+10 q^{20}-16 q^{19}-5 q^{18}+37 q^{17}-30 q^{16}-27 q^{15}+69 q^{14}-32 q^{13}-55 q^{12}+89 q^{11}-23 q^{10}-72 q^9+88 q^8-9 q^7-68 q^6+62 q^5+4 q^4-45 q^3+28 q^2+7 q-17+7 q^{-1} +2 q^{-2} -3 q^{-3} + q^{-4} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{45}+3 q^{44}-q^{43}-5 q^{42}-2 q^{41}+16 q^{40}+8 q^{39}-33 q^{38}-26 q^{37}+51 q^{36}+62 q^{35}-59 q^{34}-120 q^{33}+58 q^{32}+179 q^{31}-25 q^{30}-245 q^{29}-25 q^{28}+298 q^{27}+91 q^{26}-336 q^{25}-162 q^{24}+356 q^{23}+229 q^{22}-357 q^{21}-293 q^{20}+353 q^{19}+331 q^{18}-321 q^{17}-370 q^{16}+291 q^{15}+372 q^{14}-227 q^{13}-373 q^{12}+172 q^{11}+336 q^{10}-100 q^9-288 q^8+44 q^7+220 q^6+2 q^5-156 q^4-18 q^3+91 q^2+25 q-49-17 q^{-1} +23 q^{-2} +8 q^{-3} -10 q^{-4} -2 q^{-5} +3 q^{-6} +2 q^{-7} -3 q^{-8} + q^{-9} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-3 q^{73}+q^{72}+5 q^{71}-3 q^{70}+2 q^{69}-19 q^{68}+4 q^{67}+35 q^{66}+5 q^{65}+6 q^{64}-100 q^{63}-38 q^{62}+108 q^{61}+105 q^{60}+116 q^{59}-260 q^{58}-268 q^{57}+55 q^{56}+286 q^{55}+546 q^{54}-254 q^{53}-651 q^{52}-380 q^{51}+228 q^{50}+1217 q^{49}+209 q^{48}-799 q^{47}-1105 q^{46}-348 q^{45}+1710 q^{44}+1002 q^{43}-452 q^{42}-1713 q^{41}-1256 q^{40}+1765 q^{39}+1727 q^{38}+220 q^{37}-1981 q^{36}-2105 q^{35}+1508 q^{34}+2169 q^{33}+889 q^{32}-1969 q^{31}-2683 q^{30}+1123 q^{29}+2332 q^{28}+1419 q^{27}-1747 q^{26}-2957 q^{25}+634 q^{24}+2205 q^{23}+1798 q^{22}-1260 q^{21}-2863 q^{20}+26 q^{19}+1701 q^{18}+1925 q^{17}-533 q^{16}-2296 q^{15}-489 q^{14}+881 q^{13}+1614 q^{12}+137 q^{11}-1364 q^{10}-612 q^9+132 q^8+950 q^7+384 q^6-521 q^5-358 q^4-174 q^3+345 q^2+250 q-109-89 q^{-1} -128 q^{-2} +72 q^{-3} +77 q^{-4} -20 q^{-5} +3 q^{-6} -38 q^{-7} +12 q^{-8} +14 q^{-9} -9 q^{-10} +5 q^{-11} -6 q^{-12} +3 q^{-13} +2 q^{-14} -3 q^{-15} + q^{-16} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{110}+3 q^{109}-q^{108}-5 q^{107}+3 q^{106}+3 q^{105}+q^{104}+7 q^{103}-6 q^{102}-30 q^{101}-8 q^{100}+29 q^{99}+47 q^{98}+52 q^{97}-20 q^{96}-132 q^{95}-159 q^{94}-11 q^{93}+211 q^{92}+349 q^{91}+212 q^{90}-236 q^{89}-649 q^{88}-610 q^{87}+50 q^{86}+918 q^{85}+1245 q^{84}+513 q^{83}-945 q^{82}-2007 q^{81}-1554 q^{80}+511 q^{79}+2637 q^{78}+2919 q^{77}+657 q^{76}-2779 q^{75}-4485 q^{74}-2468 q^{73}+2201 q^{72}+5738 q^{71}+4783 q^{70}-680 q^{69}-6469 q^{68}-7254 q^{67}-1549 q^{66}+6351 q^{65}+9482 q^{64}+4321 q^{63}-5428 q^{62}-11228 q^{61}-7211 q^{60}+3854 q^{59}+12318 q^{58}+9944 q^{57}-1903 q^{56}-12793 q^{55}-12309 q^{54}-134 q^{53}+12791 q^{52}+14176 q^{51}+2110 q^{50}-12498 q^{49}-15624 q^{48}-3802 q^{47}+11986 q^{46}+16645 q^{45}+5371 q^{44}-11403 q^{43}-17433 q^{42}-6638 q^{41}+10627 q^{40}+17843 q^{39}+7990 q^{38}-9684 q^{37}-18085 q^{36}-9117 q^{35}+8360 q^{34}+17780 q^{33}+10381 q^{32}-6663 q^{31}-17086 q^{30}-11311 q^{29}+4551 q^{28}+15589 q^{27}+12021 q^{26}-2183 q^{25}-13495 q^{24}-12040 q^{23}-208 q^{22}+10743 q^{21}+11390 q^{20}+2243 q^{19}-7720 q^{18}-9909 q^{17}-3653 q^{16}+4709 q^{15}+7949 q^{14}+4195 q^{13}-2223 q^{12}-5645 q^{11}-3988 q^{10}+414 q^9+3563 q^8+3232 q^7+517 q^6-1862 q^5-2242 q^4-849 q^3+768 q^2+1346 q+749-192 q^{-1} -679 q^{-2} -506 q^{-3} -28 q^{-4} +280 q^{-5} +281 q^{-6} +78 q^{-7} -109 q^{-8} -129 q^{-9} -39 q^{-10} +25 q^{-11} +41 q^{-12} +35 q^{-13} -11 q^{-14} -25 q^{-15} +2 q^{-16} +3 q^{-17} -3 q^{-18} +6 q^{-19} + q^{-20} -6 q^{-21} +3 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




