K11n162

From Knot Atlas
Jump to navigationJump to search

K11n161.gif

K11n161

K11n163.gif

K11n163

K11n162.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n162 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X3,11,4,10 X12,6,13,5 X22,8,1,7 X16,10,17,9 X11,19,12,18 X8,14,9,13 X20,16,21,15 X17,4,18,5 X2,19,3,20 X14,22,15,21
Gauss code 1, -10, -2, 9, 3, -1, 4, -7, 5, 2, -6, -3, 7, -11, 8, -5, -9, 6, 10, -8, 11, -4
Dowker-Thistlethwaite code 6 -10 12 22 16 -18 8 20 -4 2 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n162 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n162/ThurstonBennequinNumber
Hyperbolic Volume 13.1069
A-Polynomial See Data:K11n162/A-polynomial

[edit Notes for K11n162's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11n162's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^2+14 t-21+14 t^{-1} -3 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math]
Determinant and Signature { 55, 2 }
Jones polynomial [math]\displaystyle{ -q^{10}+3 q^9-5 q^8+7 q^7-9 q^6+9 q^5-8 q^4+7 q^3-4 q^2+2 q }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^4 a^{-4} -2 z^4 a^{-6} +2 z^2 a^{-2} +z^2 a^{-4} -4 z^2 a^{-6} +3 z^2 a^{-8} + a^{-2} +2 a^{-4} -4 a^{-6} +3 a^{-8} - a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^9 a^{-7} +2 z^9 a^{-9} +5 z^8 a^{-6} +8 z^8 a^{-8} +3 z^8 a^{-10} +5 z^7 a^{-5} -4 z^7 a^{-9} +z^7 a^{-11} +3 z^6 a^{-4} -14 z^6 a^{-6} -30 z^6 a^{-8} -13 z^6 a^{-10} +z^5 a^{-3} -10 z^5 a^{-5} -14 z^5 a^{-7} -7 z^5 a^{-9} -4 z^5 a^{-11} -z^4 a^{-4} +15 z^4 a^{-6} +32 z^4 a^{-8} +16 z^4 a^{-10} +3 z^3 a^{-3} +6 z^3 a^{-5} +12 z^3 a^{-7} +14 z^3 a^{-9} +5 z^3 a^{-11} +3 z^2 a^{-2} -2 z^2 a^{-4} -14 z^2 a^{-6} -14 z^2 a^{-8} -5 z^2 a^{-10} -2 z a^{-5} -4 z a^{-7} -4 z a^{-9} -2 z a^{-11} - a^{-2} +2 a^{-4} +4 a^{-6} +3 a^{-8} + a^{-10} }[/math]
The A2 invariant Data:K11n162/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n162/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_39,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (2, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{508}{3} }[/math] [math]\displaystyle{ \frac{116}{3} }[/math] [math]\displaystyle{ 256 }[/math] [math]\displaystyle{ \frac{2528}{3} }[/math] [math]\displaystyle{ \frac{512}{3} }[/math] [math]\displaystyle{ 160 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{4064}{3} }[/math] [math]\displaystyle{ \frac{928}{3} }[/math] [math]\displaystyle{ \frac{59791}{15} }[/math] [math]\displaystyle{ -\frac{44}{15} }[/math] [math]\displaystyle{ \frac{89164}{45} }[/math] [math]\displaystyle{ -\frac{79}{9} }[/math] [math]\displaystyle{ \frac{3631}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11n162. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
21         1-1
19        2 2
17       31 -2
15      42  2
13     53   -2
11    44    0
9   45     1
7  34      -1
5 14       3
313        -2
12         2
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n161.gif

K11n161

K11n163.gif

K11n163