10 111: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_111}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=111|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-8,7,-1,3,-4,5,-2,6,-10,4,-3,9,-7,8,-6,10,-9/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=6.66667%>8</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-4</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>1</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 111]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 111]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[8, 14, 9, 13], |
|||
X[2, 10, 3, 9], X[18, 12, 19, 11], X[16, 5, 17, 6], X[4, 17, 5, 18], |
|||
X[20, 16, 1, 15], X[12, 20, 13, 19]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 111]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -5, 2, -8, 7, -1, 3, -4, 5, -2, 6, -10, 4, -3, 9, -7, 8, |
|||
-6, 10, -9]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 111]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 2, 2, -3, 2, 2, -1, 2, -3, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 111]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 17 2 3 |
|||
21 - -- + -- - -- - 17 t + 9 t - 2 t |
|||
3 2 t |
|||
t t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 111]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z - 3 z - 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 111]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 111]], KnotSignature[Knot[10, 111]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{77, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 111]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 |
|||
1 - 3 q + 7 q - 9 q + 12 q - 13 q + 12 q - 10 q + 6 q - 3 q + |
|||
10 |
|||
q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 111]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 111]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14 18 20 22 |
|||
1 - q + q + 2 q - q + 4 q - q + q - 3 q + q - 3 q + |
|||
24 26 28 30 |
|||
q + q - q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 111]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
-8 3 2 -2 4 z 10 z 7 z z z z 3 z |
|||
a + -- + -- - a - --- - ---- - --- - -- - --- + --- - ---- - |
|||
6 4 9 7 5 3 12 10 8 |
|||
a a a a a a a a a |
|||
2 2 2 3 3 3 3 3 4 |
|||
10 z 2 z 3 z 3 z 13 z 30 z 19 z 5 z z |
|||
----- - ---- + ---- - ---- + ----- + ----- + ----- + ---- + --- - |
|||
6 4 2 11 9 7 5 3 12 |
|||
a a a a a a a a a |
|||
4 4 4 4 4 5 5 5 5 |
|||
5 z 10 z 22 z 3 z 3 z 3 z 13 z 28 z 20 z |
|||
---- + ----- + ----- + ---- - ---- + ---- - ----- - ----- - ----- - |
|||
10 8 6 4 2 11 9 7 5 |
|||
a a a a a a a a a |
|||
5 6 6 6 6 6 7 7 7 7 |
|||
8 z 5 z 11 z 26 z 9 z z 7 z 7 z 3 z 3 z |
|||
---- + ---- - ----- - ----- - ---- + -- + ---- + ---- + ---- + ---- + |
|||
3 10 8 6 4 2 9 7 5 3 |
|||
a a a a a a a a a a |
|||
8 8 8 9 9 |
|||
6 z 10 z 4 z 2 z 2 z |
|||
---- + ----- + ---- + ---- + ---- |
|||
8 6 4 7 5 |
|||
a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 111]], Vassiliev[3][Knot[10, 111]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 111]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
3 5 1 2 q q 5 7 7 2 9 2 |
|||
5 q + 3 q + ---- + --- + -- + 5 q t + 4 q t + 7 q t + 5 q t + |
|||
2 t t |
|||
q t |
|||
9 3 11 3 11 4 13 4 13 5 15 5 |
|||
6 q t + 7 q t + 6 q t + 6 q t + 4 q t + 6 q t + |
|||
15 6 17 6 17 7 19 7 21 8 |
|||
2 q t + 4 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 20:52, 27 August 2005
|
|
Visit 10 111's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 111's page at Knotilus! Visit 10 111's page at the original Knot Atlas! |
10 111 Quick Notes |
10 111 Further Notes and Views
Knot presentations
Planar diagram presentation | X6271 X10,4,11,3 X14,8,15,7 X8,14,9,13 X2,10,3,9 X18,12,19,11 X16,5,17,6 X4,17,5,18 X20,16,1,15 X12,20,13,19 |
Gauss code | 1, -5, 2, -8, 7, -1, 3, -4, 5, -2, 6, -10, 4, -3, 9, -7, 8, -6, 10, -9 |
Dowker-Thistlethwaite code | 6 10 16 14 2 18 8 20 4 12 |
Conway Notation | [2.2.20.2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 111"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 77, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 111. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | χ | |||||||||
21 | 1 | 1 | |||||||||||||||||||
19 | 2 | -2 | |||||||||||||||||||
17 | 4 | 1 | 3 | ||||||||||||||||||
15 | 6 | 2 | -4 | ||||||||||||||||||
13 | 6 | 4 | 2 | ||||||||||||||||||
11 | 7 | 6 | -1 | ||||||||||||||||||
9 | 5 | 6 | -1 | ||||||||||||||||||
7 | 4 | 7 | 3 | ||||||||||||||||||
5 | 3 | 5 | -2 | ||||||||||||||||||
3 | 1 | 5 | 4 | ||||||||||||||||||
1 | 2 | -2 | |||||||||||||||||||
-1 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 111]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 111]] |
Out[3]= | PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[8, 14, 9, 13],X[2, 10, 3, 9], X[18, 12, 19, 11], X[16, 5, 17, 6], X[4, 17, 5, 18],X[20, 16, 1, 15], X[12, 20, 13, 19]] |
In[4]:= | GaussCode[Knot[10, 111]] |
Out[4]= | GaussCode[1, -5, 2, -8, 7, -1, 3, -4, 5, -2, 6, -10, 4, -3, 9, -7, 8, -6, 10, -9] |
In[5]:= | BR[Knot[10, 111]] |
Out[5]= | BR[4, {1, 1, 2, 2, -3, 2, 2, -1, 2, -3, 2}] |
In[6]:= | alex = Alexander[Knot[10, 111]][t] |
Out[6]= | 2 9 17 2 3 |
In[7]:= | Conway[Knot[10, 111]][z] |
Out[7]= | 2 4 6 1 + z - 3 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 111]} |
In[9]:= | {KnotDet[Knot[10, 111]], KnotSignature[Knot[10, 111]]} |
Out[9]= | {77, 4} |
In[10]:= | J=Jones[Knot[10, 111]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 111]} |
In[12]:= | A2Invariant[Knot[10, 111]][q] |
Out[12]= | 2 4 6 8 10 12 14 18 20 22 |
In[13]:= | Kauffman[Knot[10, 111]][a, z] |
Out[13]= | 2 2 2-8 3 2 -2 4 z 10 z 7 z z z z 3 z |
In[14]:= | {Vassiliev[2][Knot[10, 111]], Vassiliev[3][Knot[10, 111]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[10, 111]][q, t] |
Out[15]= | 33 5 1 2 q q 5 7 7 2 9 2 |