10 110
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 110's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1627 X7,20,8,1 X3,11,4,10 X5,16,6,17 X17,8,18,9 X9,14,10,15 X11,3,12,2 X15,4,16,5 X13,19,14,18 X19,13,20,12 |
| Gauss code | -1, 7, -3, 8, -4, 1, -2, 5, -6, 3, -7, 10, -9, 6, -8, 4, -5, 9, -10, 2 |
| Dowker-Thistlethwaite code | 6 10 16 20 14 2 18 4 8 12 |
| Conway Notation | [2.2.2.20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{5, 3}, {2, 4}, {3, 1}, {6, 15}, {7, 5}, {11, 6}, {14, 8}, {9, 7}, {15, 12}, {8, 10}, {4, 9}, {13, 11}, {12, 2}, {10, 13}, {1, 14}] |
[edit Notes on presentations of 10 110]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 110"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X7,20,8,1 X3,11,4,10 X5,16,6,17 X17,8,18,9 X9,14,10,15 X11,3,12,2 X15,4,16,5 X13,19,14,18 X19,13,20,12 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 7, -3, 8, -4, 1, -2, 5, -6, 3, -7, 10, -9, 6, -8, 4, -5, 9, -10, 2 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 16 20 14 2 18 4 8 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2.2.2.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{-1,2,-1,-3,-2,-2,-2,4,3,-2,3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 3}, {2, 4}, {3, 1}, {6, 15}, {7, 5}, {11, 6}, {14, 8}, {9, 7}, {15, 12}, {8, 10}, {4, 9}, {13, 11}, {12, 2}, {10, 13}, {1, 14}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-8 t^2+20 t-25+20 t^{-1} -8 t^{-2} + t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-2 z^4-3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 83, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+7 q-10+13 q^{-1} -14 q^{-2} +13 q^{-3} -11 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6+a^6-2 z^4 a^4-3 z^2 a^4-a^4+z^6 a^2+2 z^4 a^2+z^2 a^2-2 z^4-3 z^2+z^2 a^{-2} + a^{-2} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 a^3 z^9+2 a z^9+6 a^4 z^8+10 a^2 z^8+4 z^8+8 a^5 z^7+9 a^3 z^7+4 a z^7+3 z^7 a^{-1} +6 a^6 z^6-5 a^4 z^6-20 a^2 z^6+z^6 a^{-2} -8 z^6+3 a^7 z^5-13 a^5 z^5-27 a^3 z^5-19 a z^5-8 z^5 a^{-1} +a^8 z^4-7 a^6 z^4-4 a^4 z^4+8 a^2 z^4-3 z^4 a^{-2} +z^4-2 a^7 z^3+12 a^5 z^3+21 a^3 z^3+13 a z^3+6 z^3 a^{-1} -a^8 z^2+5 a^6 z^2+6 a^4 z^2-a^2 z^2+3 z^2 a^{-2} +2 z^2-4 a^5 z-6 a^3 z-3 a z-z a^{-1} -a^6-a^4- a^{-2} } |
| The A2 invariant | |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+6 q^{106}-5 q^{104}+10 q^{100}-20 q^{98}+31 q^{96}-39 q^{94}+35 q^{92}-20 q^{90}-10 q^{88}+55 q^{86}-94 q^{84}+121 q^{82}-118 q^{80}+71 q^{78}+10 q^{76}-112 q^{74}+200 q^{72}-226 q^{70}+178 q^{68}-61 q^{66}-84 q^{64}+200 q^{62}-231 q^{60}+167 q^{58}-31 q^{56}-116 q^{54}+198 q^{52}-176 q^{50}+53 q^{48}+118 q^{46}-250 q^{44}+281 q^{42}-194 q^{40}+14 q^{38}+182 q^{36}-325 q^{34}+358 q^{32}-275 q^{30}+101 q^{28}+99 q^{26}-256 q^{24}+317 q^{22}-265 q^{20}+124 q^{18}+44 q^{16}-179 q^{14}+221 q^{12}-157 q^{10}+20 q^8+134 q^6-223 q^4+206 q^2-87-82 q^{-2} +226 q^{-4} -279 q^{-6} +228 q^{-8} -96 q^{-10} -60 q^{-12} +176 q^{-14} -213 q^{-16} +180 q^{-18} -94 q^{-20} +3 q^{-22} +60 q^{-24} -87 q^{-26} +76 q^{-28} -46 q^{-30} +19 q^{-32} +3 q^{-34} -12 q^{-36} +13 q^{-38} -10 q^{-40} +6 q^{-42} -2 q^{-44} + q^{-46} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-2 q^{13}+4 q^{11}-4 q^9+2 q^7-q^5-q^3+3 q-3 q^{-1} +4 q^{-3} -2 q^{-5} + q^{-7} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-2 q^{40}+q^{38}+5 q^{36}-11 q^{34}+3 q^{32}+19 q^{30}-26 q^{28}-5 q^{26}+37 q^{24}-23 q^{22}-19 q^{20}+32 q^{18}-2 q^{16}-22 q^{14}+8 q^{12}+19 q^{10}-13 q^8-18 q^6+28 q^4+3 q^2-35+22 q^{-2} +20 q^{-4} -33 q^{-6} +4 q^{-8} +23 q^{-10} -14 q^{-12} -6 q^{-14} +9 q^{-16} - q^{-18} -2 q^{-20} + q^{-22} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{81}-2 q^{79}+q^{77}+2 q^{75}-2 q^{73}-5 q^{71}+6 q^{69}+13 q^{67}-18 q^{65}-30 q^{63}+34 q^{61}+63 q^{59}-40 q^{57}-122 q^{55}+31 q^{53}+189 q^{51}+8 q^{49}-235 q^{47}-84 q^{45}+253 q^{43}+158 q^{41}-218 q^{39}-215 q^{37}+144 q^{35}+239 q^{33}-52 q^{31}-227 q^{29}-37 q^{27}+190 q^{25}+109 q^{23}-140 q^{21}-169 q^{19}+90 q^{17}+211 q^{15}-36 q^{13}-244 q^{11}-16 q^9+257 q^7+86 q^5-250 q^3-154 q+213 q^{-1} +210 q^{-3} -142 q^{-5} -241 q^{-7} +54 q^{-9} +233 q^{-11} +27 q^{-13} -182 q^{-15} -81 q^{-17} +110 q^{-19} +99 q^{-21} -48 q^{-23} -77 q^{-25} +3 q^{-27} +46 q^{-29} +12 q^{-31} -20 q^{-33} -9 q^{-35} +6 q^{-37} +4 q^{-39} - q^{-41} -2 q^{-43} + q^{-45} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-q^{18}+3 q^{16}-2 q^{14}+q^{10}-3 q^8+2 q^6-3 q^4+2 q^2+1- q^{-2} +3 q^{-4} - q^{-6} + q^{-10} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-q^{52}+q^{50}+2 q^{48}-q^{46}-6 q^{44}+3 q^{42}+10 q^{40}-9 q^{38}-11 q^{36}+7 q^{34}+15 q^{32}-10 q^{30}-16 q^{28}+14 q^{26}+10 q^{24}-10 q^{22}-4 q^{20}+12 q^{18}-2 q^{16}-3 q^{14}+6 q^{12}-q^{10}-9 q^8+2 q^6+12 q^4-12 q^2-10+15 q^{-2} +9 q^{-4} -13 q^{-6} -7 q^{-8} +11 q^{-10} +7 q^{-12} -9 q^{-14} -6 q^{-16} +6 q^{-18} +5 q^{-20} - q^{-22} -2 q^{-24} + q^{-28} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}+6 q^{42}-7 q^{40}-4 q^{38}+18 q^{36}-12 q^{34}-13 q^{32}+27 q^{30}-13 q^{28}-16 q^{26}+27 q^{24}-6 q^{22}-11 q^{20}+12 q^{18}+3 q^{16}-5 q^{14}-10 q^{12}+9 q^{10}+6 q^8-23 q^6+9 q^4+18 q^2-25+8 q^{-2} +17 q^{-4} -20 q^{-6} +8 q^{-8} +8 q^{-10} -9 q^{-12} +4 q^{-14} +2 q^{-16} -2 q^{-18} + q^{-20} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{29}+q^{25}-q^{23}+3 q^{21}-3 q^{19}+2 q^{17}-2 q^{15}+q^{13}-2 q^{11}-2 q^5+2 q^3-q+3 q^{-1} -2 q^{-3} +3 q^{-5} - q^{-7} + q^{-9} + q^{-13} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-2 q^{46}+4 q^{44}-8 q^{42}+13 q^{40}-18 q^{38}+26 q^{36}-30 q^{34}+33 q^{32}-31 q^{30}+25 q^{28}-14 q^{26}-q^{24}+16 q^{22}-33 q^{20}+46 q^{18}-59 q^{16}+63 q^{14}-62 q^{12}+55 q^{10}-42 q^8+27 q^6-9 q^4-6 q^2+19-28 q^{-2} +33 q^{-4} -32 q^{-6} +30 q^{-8} -24 q^{-10} +17 q^{-12} -10 q^{-14} +6 q^{-16} -2 q^{-18} + q^{-20} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{78}-2 q^{74}-2 q^{72}+2 q^{70}+7 q^{68}+2 q^{66}-10 q^{64}-11 q^{62}+5 q^{60}+22 q^{58}+7 q^{56}-23 q^{54}-23 q^{52}+12 q^{50}+33 q^{48}+3 q^{46}-33 q^{44}-17 q^{42}+25 q^{40}+26 q^{38}-13 q^{36}-27 q^{34}+5 q^{32}+27 q^{30}+4 q^{28}-24 q^{26}-8 q^{24}+19 q^{22}+12 q^{20}-17 q^{18}-17 q^{16}+14 q^{14}+21 q^{12}-11 q^{10}-30 q^8+q^6+33 q^4+15 q^2-28-29 q^{-2} +16 q^{-4} +35 q^{-6} + q^{-8} -28 q^{-10} -14 q^{-12} +18 q^{-14} +18 q^{-16} -5 q^{-18} -13 q^{-20} -2 q^{-22} +7 q^{-24} +4 q^{-26} -2 q^{-28} -2 q^{-30} + q^{-34} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+6 q^{106}-5 q^{104}+10 q^{100}-20 q^{98}+31 q^{96}-39 q^{94}+35 q^{92}-20 q^{90}-10 q^{88}+55 q^{86}-94 q^{84}+121 q^{82}-118 q^{80}+71 q^{78}+10 q^{76}-112 q^{74}+200 q^{72}-226 q^{70}+178 q^{68}-61 q^{66}-84 q^{64}+200 q^{62}-231 q^{60}+167 q^{58}-31 q^{56}-116 q^{54}+198 q^{52}-176 q^{50}+53 q^{48}+118 q^{46}-250 q^{44}+281 q^{42}-194 q^{40}+14 q^{38}+182 q^{36}-325 q^{34}+358 q^{32}-275 q^{30}+101 q^{28}+99 q^{26}-256 q^{24}+317 q^{22}-265 q^{20}+124 q^{18}+44 q^{16}-179 q^{14}+221 q^{12}-157 q^{10}+20 q^8+134 q^6-223 q^4+206 q^2-87-82 q^{-2} +226 q^{-4} -279 q^{-6} +228 q^{-8} -96 q^{-10} -60 q^{-12} +176 q^{-14} -213 q^{-16} +180 q^{-18} -94 q^{-20} +3 q^{-22} +60 q^{-24} -87 q^{-26} +76 q^{-28} -46 q^{-30} +19 q^{-32} +3 q^{-34} -12 q^{-36} +13 q^{-38} -10 q^{-40} +6 q^{-42} -2 q^{-44} + q^{-46} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 110"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-8 t^2+20 t-25+20 t^{-1} -8 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-2 z^4-3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 83, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+7 q-10+13 q^{-1} -14 q^{-2} +13 q^{-3} -11 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6+a^6-2 z^4 a^4-3 z^2 a^4-a^4+z^6 a^2+2 z^4 a^2+z^2 a^2-2 z^4-3 z^2+z^2 a^{-2} + a^{-2} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 a^3 z^9+2 a z^9+6 a^4 z^8+10 a^2 z^8+4 z^8+8 a^5 z^7+9 a^3 z^7+4 a z^7+3 z^7 a^{-1} +6 a^6 z^6-5 a^4 z^6-20 a^2 z^6+z^6 a^{-2} -8 z^6+3 a^7 z^5-13 a^5 z^5-27 a^3 z^5-19 a z^5-8 z^5 a^{-1} +a^8 z^4-7 a^6 z^4-4 a^4 z^4+8 a^2 z^4-3 z^4 a^{-2} +z^4-2 a^7 z^3+12 a^5 z^3+21 a^3 z^3+13 a z^3+6 z^3 a^{-1} -a^8 z^2+5 a^6 z^2+6 a^4 z^2-a^2 z^2+3 z^2 a^{-2} +2 z^2-4 a^5 z-6 a^3 z-3 a z-z a^{-1} -a^6-a^4- a^{-2} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 110"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-8 t^2+20 t-25+20 t^{-1} -8 t^{-2} + t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+7 q-10+13 q^{-1} -14 q^{-2} +13 q^{-3} -11 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-3, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 110. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-3 q^9+q^8+11 q^7-18 q^6-7 q^5+48 q^4-37 q^3-44 q^2+101 q-35-101 q^{-1} +139 q^{-2} -10 q^{-3} -147 q^{-4} +144 q^{-5} +22 q^{-6} -158 q^{-7} +114 q^{-8} +42 q^{-9} -124 q^{-10} +63 q^{-11} +38 q^{-12} -64 q^{-13} +21 q^{-14} +17 q^{-15} -19 q^{-16} +5 q^{-17} +3 q^{-18} -3 q^{-19} + q^{-20} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}-3 q^{20}+q^{19}+5 q^{18}+3 q^{17}-18 q^{16}-10 q^{15}+37 q^{14}+37 q^{13}-61 q^{12}-90 q^{11}+66 q^{10}+184 q^9-50 q^8-281 q^7-35 q^6+393 q^5+156 q^4-460 q^3-330 q^2+492 q+508-457 q^{-1} -697 q^{-2} +396 q^{-3} +844 q^{-4} -286 q^{-5} -970 q^{-6} +168 q^{-7} +1052 q^{-8} -39 q^{-9} -1091 q^{-10} -91 q^{-11} +1081 q^{-12} +210 q^{-13} -1010 q^{-14} -318 q^{-15} +891 q^{-16} +385 q^{-17} -719 q^{-18} -413 q^{-19} +532 q^{-20} +382 q^{-21} -343 q^{-22} -318 q^{-23} +195 q^{-24} +231 q^{-25} -100 q^{-26} -137 q^{-27} +37 q^{-28} +78 q^{-29} -18 q^{-30} -34 q^{-31} +8 q^{-32} +14 q^{-33} -6 q^{-34} -3 q^{-35} + q^{-36} +3 q^{-37} -3 q^{-38} + q^{-39} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-3 q^{35}+q^{34}+5 q^{33}-3 q^{32}+3 q^{31}-21 q^{30}+2 q^{29}+39 q^{28}+9 q^{27}+14 q^{26}-120 q^{25}-66 q^{24}+121 q^{23}+151 q^{22}+202 q^{21}-315 q^{20}-439 q^{19}-45 q^{18}+379 q^{17}+969 q^{16}-109 q^{15}-1009 q^{14}-990 q^{13}-71 q^{12}+2090 q^{11}+1161 q^{10}-744 q^9-2354 q^8-1950 q^7+2308 q^6+2993 q^5+1157 q^4-2760 q^3-4608 q^2+807 q+3963+4009 q^{-1} -1499 q^{-2} -6615 q^{-3} -1739 q^{-4} +3449 q^{-5} +6490 q^{-6} +756 q^{-7} -7352 q^{-8} -4194 q^{-9} +2018 q^{-10} +8024 q^{-11} +3037 q^{-12} -7124 q^{-13} -6052 q^{-14} +331 q^{-15} +8656 q^{-16} +4972 q^{-17} -6150 q^{-18} -7223 q^{-19} -1495 q^{-20} +8244 q^{-21} +6420 q^{-22} -4265 q^{-23} -7298 q^{-24} -3320 q^{-25} +6391 q^{-26} +6806 q^{-27} -1667 q^{-28} -5768 q^{-29} -4343 q^{-30} +3453 q^{-31} +5516 q^{-32} +479 q^{-33} -3098 q^{-34} -3771 q^{-35} +881 q^{-36} +3111 q^{-37} +1124 q^{-38} -840 q^{-39} -2133 q^{-40} -202 q^{-41} +1108 q^{-42} +657 q^{-43} +79 q^{-44} -770 q^{-45} -214 q^{-46} +237 q^{-47} +165 q^{-48} +137 q^{-49} -190 q^{-50} -52 q^{-51} +40 q^{-52} +3 q^{-53} +49 q^{-54} -39 q^{-55} -3 q^{-56} +11 q^{-57} -9 q^{-58} +10 q^{-59} -7 q^{-60} + q^{-61} +3 q^{-62} -3 q^{-63} + q^{-64} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




