9 12: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=9_12}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=9|k=12|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-6,7,-9,2,-4,5,-7,6,-8,3,-5,4/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 12]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 12]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 16, 6, 17], X[11, 1, 12, 18], |
|||
X[17, 13, 18, 12], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7], |
|||
X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 12]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 12]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, -3, -4, 3, -4}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 12]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 2 |
|||
-13 - -- + - + 9 t - 2 t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 12]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 + z - 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 12], Knot[11, NonAlternating, 84]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 12]], KnotSignature[Knot[9, 12]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{35, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 12]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 2 3 5 6 6 5 4 |
|||
-2 - q + -- - -- + -- - -- + -- - -- + - + q |
|||
7 6 5 4 3 2 q |
|||
q q q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 12], Knot[11, NonAlternating, 15]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 12]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -26 -24 -22 -18 2 -14 -10 -6 -4 2 4 |
|||
-q - q + q + q + --- - q - q + q - q + -- + q |
|||
16 2 |
|||
q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 12]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 3 5 7 9 2 2 2 |
|||
1 - a - 2 a - a - 2 a z - 4 a z - a z + a z - 2 z - 2 a z + |
|||
4 2 6 2 8 2 3 3 3 5 3 7 3 |
|||
3 a z + 7 a z + 4 a z - 3 a z + 4 a z + 13 a z + 3 a z - |
|||
9 3 4 2 4 4 4 6 4 8 4 5 3 5 |
|||
3 a z + z - a z - a z - 5 a z - 6 a z + 2 a z - 3 a z - |
|||
5 5 7 5 9 5 2 6 8 6 3 7 5 7 |
|||
11 a z - 5 a z + a z + 2 a z + 2 a z + 2 a z + 4 a z + |
|||
7 7 4 8 6 8 |
|||
2 a z + a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 12]], Vassiliev[3][Knot[9, 12]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -3}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 12]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 1 1 2 1 3 2 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
|||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
|||
q q t q t q t q t q t q t q t |
|||
3 3 3 3 2 3 t 3 2 |
|||
----- + ----- + ----- + ----- + ---- + ---- + - + q t + q t |
|||
9 3 7 3 7 2 5 2 5 3 q |
|||
q t q t q t q t q t q t</nowiki></pre></td></tr> |
|||
</table> |
Revision as of 21:53, 27 August 2005
|
|
![]() |
Visit 9 12's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 12's page at Knotilus! Visit 9 12's page at the original Knot Atlas! |
9 12 Quick Notes |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X5,16,6,17 X11,1,12,18 X17,13,18,12 X7,14,8,15 X13,8,14,9 X15,6,16,7 X9,2,10,3 |
Gauss code | -1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4 |
Dowker-Thistlethwaite code | 4 10 16 14 2 18 8 6 12 |
Conway Notation | [4212] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+9 t-13+9 t^{-1} -2 t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4+z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 35, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+4 q^{-1} -5 q^{-2} +6 q^{-3} -6 q^{-4} +5 q^{-5} -3 q^{-6} +2 q^{-7} - q^{-8} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^8+2 z^2 a^6+2 a^6-z^4 a^4-z^2 a^4-a^4-z^4 a^2-z^2 a^2+z^2+1} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-3 z^3 a^9+z a^9+2 z^6 a^8-6 z^4 a^8+4 z^2 a^8-a^8+2 z^7 a^7-5 z^5 a^7+3 z^3 a^7-z a^7+z^8 a^6-5 z^4 a^6+7 z^2 a^6-2 a^6+4 z^7 a^5-11 z^5 a^5+13 z^3 a^5-4 z a^5+z^8 a^4-z^4 a^4+3 z^2 a^4-a^4+2 z^7 a^3-3 z^5 a^3+4 z^3 a^3-2 z a^3+2 z^6 a^2-z^4 a^2-2 z^2 a^2+2 z^5 a-3 z^3 a+z^4-2 z^2+1} |
The A2 invariant | |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-q^{126}+2 q^{124}-3 q^{122}+2 q^{120}-2 q^{118}-2 q^{116}+7 q^{114}-10 q^{112}+10 q^{110}-10 q^{108}+4 q^{106}+4 q^{104}-15 q^{102}+20 q^{100}-20 q^{98}+14 q^{96}-q^{94}-12 q^{92}+19 q^{90}-18 q^{88}+15 q^{86}-3 q^{84}-10 q^{82}+14 q^{80}-11 q^{78}+2 q^{76}+10 q^{74}-16 q^{72}+18 q^{70}-8 q^{68}-4 q^{66}+17 q^{64}-26 q^{62}+29 q^{60}-21 q^{58}+6 q^{56}+11 q^{54}-23 q^{52}+30 q^{50}-25 q^{48}+13 q^{46}-13 q^{42}+16 q^{40}-14 q^{38}+3 q^{36}+8 q^{34}-13 q^{32}+10 q^{30}-2 q^{28}-9 q^{26}+17 q^{24}-19 q^{22}+15 q^{20}-6 q^{18}-5 q^{16}+14 q^{14}-16 q^{12}+17 q^{10}-10 q^8+5 q^6+q^4-7 q^2+9-8 q^{-2} +7 q^{-4} -3 q^{-6} + q^{-8} +2 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{17}+q^{15}-q^{13}+2 q^{11}-q^9+q^5-q^3+2 q- q^{-1} + q^{-3} } |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-q^{46}-q^{44}+3 q^{42}-2 q^{40}-4 q^{38}+5 q^{36}+q^{34}-6 q^{32}+5 q^{30}+3 q^{28}-7 q^{26}+2 q^{24}+3 q^{22}-3 q^{20}-2 q^{18}+2 q^{16}+4 q^{14}-5 q^{12}+7 q^8-5 q^6-2 q^4+7 q^2-2-2 q^{-2} +3 q^{-4} - q^{-6} - q^{-8} + q^{-10} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{93}+q^{91}+q^{89}-q^{87}-2 q^{85}+2 q^{83}+5 q^{81}-2 q^{79}-8 q^{77}+10 q^{73}+3 q^{71}-12 q^{69}-10 q^{67}+12 q^{65}+15 q^{63}-6 q^{61}-19 q^{59}+3 q^{57}+21 q^{55}+2 q^{53}-21 q^{51}-7 q^{49}+19 q^{47}+7 q^{45}-14 q^{43}-9 q^{41}+9 q^{39}+10 q^{37}-5 q^{35}-10 q^{33}-3 q^{31}+11 q^{29}+10 q^{27}-10 q^{25}-16 q^{23}+9 q^{21}+20 q^{19}-5 q^{17}-21 q^{15}+q^{13}+20 q^{11}+4 q^9-15 q^7-5 q^5+11 q^3+5 q-5 q^{-1} -4 q^{-3} +3 q^{-5} +2 q^{-7} -2 q^{-9} +2 q^{-13} - q^{-17} - q^{-19} + q^{-21} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{152}-q^{150}-q^{148}+q^{146}+2 q^{142}-4 q^{140}-3 q^{138}+4 q^{136}+3 q^{134}+8 q^{132}-8 q^{130}-13 q^{128}+2 q^{126}+8 q^{124}+23 q^{122}-4 q^{120}-25 q^{118}-17 q^{116}-4 q^{114}+40 q^{112}+23 q^{110}-12 q^{108}-36 q^{106}-41 q^{104}+28 q^{102}+50 q^{100}+33 q^{98}-24 q^{96}-77 q^{94}-14 q^{92}+44 q^{90}+69 q^{88}+12 q^{86}-80 q^{84}-49 q^{82}+16 q^{80}+74 q^{78}+38 q^{76}-56 q^{74}-51 q^{72}-5 q^{70}+52 q^{68}+39 q^{66}-25 q^{64}-39 q^{62}-15 q^{60}+29 q^{58}+32 q^{56}+3 q^{54}-30 q^{52}-29 q^{50}+31 q^{46}+43 q^{44}-17 q^{42}-50 q^{40}-36 q^{38}+24 q^{36}+79 q^{34}+13 q^{32}-50 q^{30}-68 q^{28}-5 q^{26}+84 q^{24}+42 q^{22}-18 q^{20}-67 q^{18}-38 q^{16}+48 q^{14}+42 q^{12}+18 q^{10}-33 q^8-40 q^6+10 q^4+14 q^2+24- q^{-2} -18 q^{-4} -2 q^{-6} -5 q^{-8} +10 q^{-10} +4 q^{-12} -3 q^{-14} +3 q^{-16} -6 q^{-18} +4 q^{-26} - q^{-28} - q^{-32} - q^{-34} + q^{-36} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{225}+q^{223}+q^{221}-q^{219}+2 q^{211}+2 q^{209}-4 q^{207}-6 q^{205}-q^{203}+4 q^{201}+9 q^{199}+8 q^{197}-4 q^{195}-19 q^{193}-17 q^{191}+3 q^{189}+23 q^{187}+33 q^{185}+13 q^{183}-24 q^{181}-50 q^{179}-36 q^{177}+12 q^{175}+56 q^{173}+66 q^{171}+23 q^{169}-47 q^{167}-91 q^{165}-71 q^{163}+6 q^{161}+91 q^{159}+119 q^{157}+58 q^{155}-56 q^{153}-149 q^{151}-138 q^{149}-4 q^{147}+147 q^{145}+202 q^{143}+99 q^{141}-106 q^{139}-247 q^{137}-186 q^{135}+40 q^{133}+245 q^{131}+256 q^{129}+44 q^{127}-220 q^{125}-299 q^{123}-113 q^{121}+170 q^{119}+300 q^{117}+164 q^{115}-109 q^{113}-278 q^{111}-188 q^{109}+65 q^{107}+231 q^{105}+181 q^{103}-19 q^{101}-182 q^{99}-164 q^{97}-3 q^{95}+138 q^{93}+134 q^{91}+17 q^{89}-96 q^{87}-114 q^{85}-35 q^{83}+68 q^{81}+106 q^{79}+51 q^{77}-34 q^{75}-103 q^{73}-93 q^{71}+q^{69}+108 q^{67}+140 q^{65}+48 q^{63}-107 q^{61}-193 q^{59}-114 q^{57}+89 q^{55}+238 q^{53}+187 q^{51}-47 q^{49}-263 q^{47}-256 q^{45}-19 q^{43}+249 q^{41}+307 q^{39}+93 q^{37}-201 q^{35}-316 q^{33}-160 q^{31}+122 q^{29}+287 q^{27}+207 q^{25}-35 q^{23}-224 q^{21}-210 q^{19}-36 q^{17}+139 q^{15}+184 q^{13}+84 q^{11}-65 q^9-135 q^7-90 q^5+7 q^3+80 q+81 q^{-1} +26 q^{-3} -39 q^{-5} -57 q^{-7} -32 q^{-9} +8 q^{-11} +33 q^{-13} +28 q^{-15} +7 q^{-17} -15 q^{-19} -20 q^{-21} -8 q^{-23} +3 q^{-25} +9 q^{-27} +9 q^{-29} +4 q^{-31} -5 q^{-33} -6 q^{-35} -2 q^{-37} -2 q^{-39} +2 q^{-41} +4 q^{-43} + q^{-45} - q^{-47} - q^{-51} - q^{-53} + q^{-55} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{24}+q^{22}+q^{18}+2 q^{16}-q^{14}-q^{10}+q^6-q^4+2 q^2+ q^{-4} } |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{66}+4 q^{64}-8 q^{62}+17 q^{60}-24 q^{58}+32 q^{56}-48 q^{54}+57 q^{52}-64 q^{50}+62 q^{48}-58 q^{46}+46 q^{44}-18 q^{42}-6 q^{40}+38 q^{38}-65 q^{36}+90 q^{34}-112 q^{32}+116 q^{30}-122 q^{28}+110 q^{26}-90 q^{24}+68 q^{22}-37 q^{20}+10 q^{18}+20 q^{16}-36 q^{14}+47 q^{12}-54 q^{10}+56 q^8-48 q^6+42 q^4-36 q^2+30-20 q^{-2} +15 q^{-4} -10 q^{-6} +6 q^{-8} -2 q^{-10} + q^{-12} } |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+q^{64}-2 q^{60}-q^{58}+q^{56}-q^{54}-3 q^{52}-q^{50}+4 q^{48}+3 q^{46}-2 q^{44}+4 q^{40}-5 q^{36}-3 q^{34}+2 q^{32}-2 q^{28}+2 q^{26}+q^{24}-q^{22}+3 q^{20}+2 q^{18}-3 q^{16}-q^{14}+4 q^{12}+q^{10}-4 q^8+6 q^4-3+ q^{-2} +2 q^{-4} - q^{-8} + q^{-12} } |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 12"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+9 t-13+9 t^{-1} -2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+4 q^{-1} -5 q^{-2} +6 q^{-3} -6 q^{-4} +5 q^{-5} -3 q^{-6} +2 q^{-7} - q^{-8} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^8+2 z^2 a^6+2 a^6-z^4 a^4-z^2 a^4-a^4-z^4 a^2-z^2 a^2+z^2+1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-3 z^3 a^9+z a^9+2 z^6 a^8-6 z^4 a^8+4 z^2 a^8-a^8+2 z^7 a^7-5 z^5 a^7+3 z^3 a^7-z a^7+z^8 a^6-5 z^4 a^6+7 z^2 a^6-2 a^6+4 z^7 a^5-11 z^5 a^5+13 z^3 a^5-4 z a^5+z^8 a^4-z^4 a^4+3 z^2 a^4-a^4+2 z^7 a^3-3 z^5 a^3+4 z^3 a^3-2 z a^3+2 z^6 a^2-z^4 a^2-2 z^2 a^2+2 z^5 a-3 z^3 a+z^4-2 z^2+1} |
Vassiliev invariants
V2 and V3: | (1, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 9 12. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
3 | 1 | 1 | ||||||||||||||||||
1 | 1 | -1 | ||||||||||||||||||
-1 | 3 | 1 | 2 | |||||||||||||||||
-3 | 3 | 2 | -1 | |||||||||||||||||
-5 | 3 | 2 | 1 | |||||||||||||||||
-7 | 3 | 3 | 0 | |||||||||||||||||
-9 | 2 | 3 | -1 | |||||||||||||||||
-11 | 1 | 3 | 2 | |||||||||||||||||
-13 | 1 | 2 | -1 | |||||||||||||||||
-15 | 1 | 1 | ||||||||||||||||||
-17 | 1 | -1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 12]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 12]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 16, 6, 17], X[11, 1, 12, 18],X[17, 13, 18, 12], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7],X[9, 2, 10, 3]] |
In[4]:= | GaussCode[Knot[9, 12]] |
Out[4]= | GaussCode[-1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4] |
In[5]:= | BR[Knot[9, 12]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, -3, -4, 3, -4}] |
In[6]:= | alex = Alexander[Knot[9, 12]][t] |
Out[6]= | 2 9 2 |
In[7]:= | Conway[Knot[9, 12]][z] |
Out[7]= | 2 4 1 + z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 12], Knot[11, NonAlternating, 84]} |
In[9]:= | {KnotDet[Knot[9, 12]], KnotSignature[Knot[9, 12]]} |
Out[9]= | {35, -2} |
In[10]:= | J=Jones[Knot[9, 12]][q] |
Out[10]= | -8 2 3 5 6 6 5 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 12], Knot[11, NonAlternating, 15]} |
In[12]:= | A2Invariant[Knot[9, 12]][q] |
Out[12]= | -26 -24 -22 -18 2 -14 -10 -6 -4 2 4 |
In[13]:= | Kauffman[Knot[9, 12]][a, z] |
Out[13]= | 4 6 8 3 5 7 9 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[9, 12]], Vassiliev[3][Knot[9, 12]]} |
Out[14]= | {0, -3} |
In[15]:= | Kh[Knot[9, 12]][q, t] |
Out[15]= | 2 3 1 1 1 2 1 3 2 |