9 11

From Knot Atlas
Jump to navigationJump to search

9 10.gif

9_10

9 12.gif

9_12

9 11.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 11's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 11 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X13,1,14,18 X5,15,6,14 X7,17,8,16 X15,7,16,6 X17,9,18,8
Gauss code -1, 4, -3, 1, -6, 8, -7, 9, -2, 3, -4, 2, -5, 6, -8, 7, -9, 5
Dowker-Thistlethwaite code 4 10 14 16 12 2 18 6 8
Conway Notation [4122]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 11 ML.gif 9 11 AP.gif
[{11, 7}, {8, 6}, {7, 10}, {1, 8}, {9, 11}, {10, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 9}]

[edit Notes on presentations of 9 11]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-12]
Hyperbolic Volume 8.28859
A-Polynomial See Data:9 11/A-polynomial

[edit Notes for 9 11's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 4

[edit Notes for 9 11's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+5 t^2-7 t+7-7 t^{-1} +5 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 33, 4 }
Jones polynomial [math]\displaystyle{ -q^9+2 q^8-4 q^7+5 q^6-5 q^5+6 q^4-4 q^3+3 q^2-2 q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} +z^4 a^{-2} -4 z^4 a^{-4} +2 z^4 a^{-6} +3 z^2 a^{-2} -4 z^2 a^{-4} +6 z^2 a^{-6} -z^2 a^{-8} + a^{-2} - a^{-4} +3 a^{-6} -2 a^{-8} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-4} +z^8 a^{-6} +2 z^7 a^{-3} +4 z^7 a^{-5} +2 z^7 a^{-7} +z^6 a^{-2} -z^6 a^{-4} +z^6 a^{-6} +3 z^6 a^{-8} -8 z^5 a^{-3} -12 z^5 a^{-5} -z^5 a^{-7} +3 z^5 a^{-9} -4 z^4 a^{-2} -5 z^4 a^{-4} -7 z^4 a^{-6} -4 z^4 a^{-8} +2 z^4 a^{-10} +8 z^3 a^{-3} +9 z^3 a^{-5} -3 z^3 a^{-7} -3 z^3 a^{-9} +z^3 a^{-11} +4 z^2 a^{-2} +5 z^2 a^{-4} +6 z^2 a^{-6} +4 z^2 a^{-8} -z^2 a^{-10} -z a^{-3} -2 z a^{-5} +2 z a^{-7} +2 z a^{-9} -z a^{-11} - a^{-2} - a^{-4} -3 a^{-6} -2 a^{-8} }[/math]
The A2 invariant [math]\displaystyle{ 1- q^{-8} +2 q^{-10} +2 q^{-14} + q^{-16} + q^{-20} - q^{-22} - q^{-26} - q^{-28} }[/math]
The G2 invariant [math]\displaystyle{ q^{-2} - q^{-4} +3 q^{-6} -4 q^{-8} +3 q^{-10} - q^{-12} -2 q^{-14} +10 q^{-16} -12 q^{-18} +13 q^{-20} -7 q^{-22} -2 q^{-24} +10 q^{-26} -17 q^{-28} +17 q^{-30} -12 q^{-32} +2 q^{-34} +8 q^{-36} -13 q^{-38} +12 q^{-40} -7 q^{-42} -2 q^{-44} +7 q^{-46} -8 q^{-48} +4 q^{-50} - q^{-52} -5 q^{-54} +16 q^{-56} -12 q^{-58} +10 q^{-60} - q^{-62} -8 q^{-64} +19 q^{-66} -20 q^{-68} +18 q^{-70} -9 q^{-72} +16 q^{-76} -19 q^{-78} +17 q^{-80} -8 q^{-82} -2 q^{-84} +8 q^{-86} -10 q^{-88} +4 q^{-90} -4 q^{-94} +7 q^{-96} -6 q^{-98} +3 q^{-102} -10 q^{-104} +10 q^{-106} -9 q^{-108} +4 q^{-110} - q^{-112} -4 q^{-114} +8 q^{-116} -11 q^{-118} +11 q^{-120} -7 q^{-122} +2 q^{-124} + q^{-126} -6 q^{-128} +6 q^{-130} -6 q^{-132} +5 q^{-134} -2 q^{-136} + q^{-140} -2 q^{-142} +2 q^{-144} - q^{-146} + q^{-148} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n95,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (4, 9)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1160}{3} }[/math] [math]\displaystyle{ \frac{208}{3} }[/math] [math]\displaystyle{ 1152 }[/math] [math]\displaystyle{ 2288 }[/math] [math]\displaystyle{ 384 }[/math] [math]\displaystyle{ 392 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 2592 }[/math] [math]\displaystyle{ \frac{18560}{3} }[/math] [math]\displaystyle{ \frac{3328}{3} }[/math] [math]\displaystyle{ \frac{204662}{15} }[/math] [math]\displaystyle{ -\frac{5408}{15} }[/math] [math]\displaystyle{ \frac{284288}{45} }[/math] [math]\displaystyle{ \frac{1450}{9} }[/math] [math]\displaystyle{ \frac{13382}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of 9 11. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
19         1-1
17        1 1
15       31 -2
13      21  1
11     33   0
9    32    1
7   13     2
5  23      -1
3 12       1
1 1        -1
-11         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials