T(35,2): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- |
<!-- --> |
||
<!-- --> |
<!-- --> |
||
Line 10: | Line 10: | ||
|- valign=top |
|- valign=top |
||
|[[Image:{{PAGENAME}}.jpg]] |
|[[Image:{{PAGENAME}}.jpg]] |
||
| |
|{{Torus Knot Site Links|m=35|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-26,27,-28,29,-30,31,-32,33,-34,35,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,26,-27,28,-29,30,-31,32,-33,34,-35,1,-2,3,-4,5,-6,7/goTop.html}} |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/35.2.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
{{:{{PAGENAME}} Quick Notes}} |
{{:{{PAGENAME}} Quick Notes}} |
||
Line 22: | Line 20: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>29,65,30,64</sub> X<sub>65,31,66,30</sub> X<sub>31,67,32,66</sub> X<sub>67,33,68,32</sub> X<sub>33,69,34,68</sub> X<sub>69,35,70,34</sub> X<sub>35,1,36,70</sub> X<sub>1,37,2,36</sub> X<sub>37,3,38,2</sub> X<sub>3,39,4,38</sub> X<sub>39,5,40,4</sub> X<sub>5,41,6,40</sub> X<sub>41,7,42,6</sub> X<sub>7,43,8,42</sub> X<sub>43,9,44,8</sub> X<sub>9,45,10,44</sub> X<sub>45,11,46,10</sub> X<sub>11,47,12,46</sub> X<sub>47,13,48,12</sub> X<sub>13,49,14,48</sub> X<sub>49,15,50,14</sub> X<sub>15,51,16,50</sub> X<sub>51,17,52,16</sub> X<sub>17,53,18,52</sub> X<sub>53,19,54,18</sub> X<sub>19,55,20,54</sub> X<sub>55,21,56,20</sub> X<sub>21,57,22,56</sub> X<sub>57,23,58,22</sub> X<sub>23,59,24,58</sub> X<sub>59,25,60,24</sub> X<sub>25,61,26,60</sub> X<sub>61,27,62,26</sub> X<sub>27,63,28,62</sub> X<sub>63,29,64,28</sub> |
|||
|- |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em;" | <math>\{-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-26,27,-28,29,-30,31,-32,33,-34,35,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,26,-27,28,-29,30,-31,32,-33,34,-35,1,-2,3,-4,5,-6,7\}</math> |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 |
|||
|} |
|||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 196: | Line 180: | ||
q t + q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
{{Category:Knot Page}} |
Revision as of 18:42, 28 August 2005
|
|
Visit [[[:Template:KnotilusURL]] T(35,2)'s page] at Knotilus!
Visit T(35,2)'s page at the original Knot Atlas! |
T(35,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X29,65,30,64 X65,31,66,30 X31,67,32,66 X67,33,68,32 X33,69,34,68 X69,35,70,34 X35,1,36,70 X1,37,2,36 X37,3,38,2 X3,39,4,38 X39,5,40,4 X5,41,6,40 X41,7,42,6 X7,43,8,42 X43,9,44,8 X9,45,10,44 X45,11,46,10 X11,47,12,46 X47,13,48,12 X13,49,14,48 X49,15,50,14 X15,51,16,50 X51,17,52,16 X17,53,18,52 X53,19,54,18 X19,55,20,54 X55,21,56,20 X21,57,22,56 X57,23,58,22 X23,59,24,58 X59,25,60,24 X25,61,26,60 X61,27,62,26 X27,63,28,62 X63,29,64,28 |
Gauss code | -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 1, -2, 3, -4, 5, -6, 7 |
Dowker-Thistlethwaite code | 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 |
Conway Notation | Data:T(35,2)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(35,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, 34 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (153, 1785) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 34 is the signature of T(35,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | χ | |||||||||
105 | 1 | -1 | ||||||||||||||||||||||||||||||||||||||||||||
103 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
101 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
99 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
97 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
95 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
93 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
91 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
89 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
87 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
85 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
83 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
81 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
79 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
77 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
75 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
73 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
71 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
69 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
67 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
65 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
63 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
61 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
59 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
57 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
55 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
53 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
51 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
49 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
47 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
45 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
43 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||||||||||||||
39 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
37 | 1 | 1 | ||||||||||||||||||||||||||||||||||||||||||||
35 | 1 | 1 | ||||||||||||||||||||||||||||||||||||||||||||
33 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[35, 2]] |
Out[2]= | 35 |
In[3]:= | PD[TorusKnot[35, 2]] |
Out[3]= | PD[X[29, 65, 30, 64], X[65, 31, 66, 30], X[31, 67, 32, 66],X[67, 33, 68, 32], X[33, 69, 34, 68], X[69, 35, 70, 34], X[35, 1, 36, 70], X[1, 37, 2, 36], X[37, 3, 38, 2], X[3, 39, 4, 38], X[39, 5, 40, 4], X[5, 41, 6, 40], X[41, 7, 42, 6], X[7, 43, 8, 42], X[43, 9, 44, 8], X[9, 45, 10, 44], X[45, 11, 46, 10], X[11, 47, 12, 46], X[47, 13, 48, 12], X[13, 49, 14, 48], X[49, 15, 50, 14], X[15, 51, 16, 50], X[51, 17, 52, 16], X[17, 53, 18, 52], X[53, 19, 54, 18], X[19, 55, 20, 54], X[55, 21, 56, 20], X[21, 57, 22, 56], X[57, 23, 58, 22], X[23, 59, 24, 58], X[59, 25, 60, 24], X[25, 61, 26, 60],X[61, 27, 62, 26], X[27, 63, 28, 62], X[63, 29, 64, 28]] |
In[4]:= | GaussCode[TorusKnot[35, 2]] |
Out[4]= | GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21,-22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34,-35, 1, -2, 3, -4, 5, -6, 7] |
In[5]:= | BR[TorusKnot[35, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[35, 2]][t] |
Out[6]= | -17 -16 -15 -14 -13 -12 -11 -10 -9 |
In[7]:= | Conway[TorusKnot[35, 2]][z] |
Out[7]= | 2 4 6 8 10 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[35, 2]], KnotSignature[TorusKnot[35, 2]]} |
Out[9]= | {35, 34} |
In[10]:= | J=Jones[TorusKnot[35, 2]][q] |
Out[10]= | 17 19 20 21 22 23 24 25 26 27 28 29 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[35, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[35, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[35, 2]], Vassiliev[3][TorusKnot[35, 2]]} |
Out[14]= | {0, 1785} |
In[15]:= | Kh[TorusKnot[35, 2]][q, t] |
Out[15]= | 33 35 37 2 41 3 41 4 45 5 45 6 49 7 |
This category should contain all the individual knots pages, like 7_5, K11n67, L8a2 and T(5,3)