The Kauffman Polynomial: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
<!--$$?Kauffman$$--> |
<!--$$?Kauffman$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{HelpAndAbout1|n=1|s=Kauffman}} |
|||
Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z. |
|||
{{HelpAndAbout2|n=2|s=Kauffman}} |
|||
The Kauffman program was written by Scott Morrison. |
|||
{{HelpAndAbout3}} |
|||
<!--END--> |
<!--END--> |
||
Thus, for example, here's the Kauffman polynomial of the knot [[5_2]]: |
Thus, for example, here's the Kauffman polynomial of the knot [[5_2]]: |
||
<!--$$Kauffman[Knot[5, 2]][a, z]$$--> |
<!--$$Kauffman[Knot[5, 2]][a, z]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut1|n=3}} |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki></pre> |
|||
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3 5 3 7 3 4 4 |
|||
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z + 2 a z + a z + a z + |
|||
6 4 |
|||
a z</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
Line 29: | Line 44: | ||
<!--$$K = TorusKnot[8, 3];$$--> |
<!--$$K = TorusKnot[8, 3];$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{In1|n=4}} |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>K = TorusKnot[8, 3];</nowiki></pre> |
|||
{{In2}} |
|||
<!--END--> |
<!--END--> |
||
Line 35: | Line 54: | ||
Jones[K][q] |
Jones[K][q] |
||
}]$$--> |
}]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut1|n=5}} |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Simplify[{ |
|||
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)], |
|||
Jones[K][q] |
|||
}]</nowiki></pre> |
|||
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> 7 9 16 7 9 16 |
|||
{q + q - q , q + q - q }</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
Revision as of 21:30, 28 August 2005
The Kauffman polynomial (see [Kauffman]) of a knot or link is where is the writhe of (see How is the Jones Polynomial Computed?) and where is the regular isotopy invariant defined by the skein relations
(here is a strand and is the same strand with a kink added) and
(here , , and are , , and , respectively), and by the initial condition where is the unknot .
KnotTheory`
knows about the Kauffman polynomial:
(For In[1] see Setup)
In[1]:= ?Kauffman
Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z. |
In[2]:= Kauffman::about
The Kauffman program was written by Scott Morrison. |
Thus, for example, here's the Kauffman polynomial of the knot 5_2:
In[3]:= |
Kauffman[Knot[5, 2]][a, z] |
Out[3]= | 2 4 6 5 7 2 2 4 2 6 2 3 3 5 3 7 3 4 4 -a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z + 2 a z + a z + a z + 6 4 a z |
It is well known that the Jones polynomial is related to the Kauffman polynomial via
where is some knot or link and where is the number of components of . Let us verify this fact for the torus knot T(8,3):
In[4]:= |
K = TorusKnot[8, 3]; |
In[5]:= |
Simplify[{ (-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)], Jones[K][q] }] |
Out[5]= | 7 9 16 7 9 16 {q + q - q , q + q - q } |
[Kauffman] ^ L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.