9 24: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=24|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,6,-5,7,-8,3,-7,4,-6,5/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=24|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,6,-5,7,-8,3,-7,4,-6,5/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 141: Line 133:
q t</nowiki></pre></td></tr>
q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:05, 28 August 2005

9 23.gif

9_23

9 25.gif

9_25

9 24.gif Visit 9 24's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 24's page at Knotilus!

Visit 9 24's page at the original Knot Atlas!

9 24 Quick Notes


9 24 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283
Gauss code -1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5
Dowker-Thistlethwaite code 4 8 14 2 16 18 6 12 10
Conway Notation [3,21,2+]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 10.8337
A-Polynomial See Data:9 24/A-polynomial

[edit Notes for 9 24's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 24's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 45, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 24. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        2 -2
5       31 2
3      42  -2
1     43   1
-1    45    1
-3   33     0
-5  14      3
-7 13       -2
-9 1        1
-111         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 24]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 24]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16], 
 X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12], 

X[13, 6, 14, 7], X[7, 2, 8, 3]]
In[4]:=
GaussCode[Knot[9, 24]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]
In[5]:=
BR[Knot[9, 24]]
Out[5]=  
BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 24]][t]
Out[6]=  
      -3   5    10             2    3

13 - t + -- - -- - 10 t + 5 t - t

           2   t
t
In[7]:=
Conway[Knot[9, 24]][z]
Out[7]=  
     2    4    6
1 + z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85], 
  Knot[11, NonAlternating, 164]}
In[9]:=
{KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]}
Out[9]=  
{45, 0}
In[10]:=
J=Jones[Knot[9, 24]][q]
Out[10]=  
     -5   2    4    7    7            2      3    4

8 - q + -- - -- + -- - - - 7 q + 5 q - 3 q + q

          4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 24]}
In[12]:=
A2Invariant[Knot[9, 24]][q]
Out[12]=  
      -16    -14    -10   3    2     -4   2     2      4    8    10

-2 - q - q - q + -- + -- + q + -- + q - 2 q + q - q +

                          8    6          2
                         q    q          q

  12
q
In[13]:=
Kauffman[Knot[9, 24]][a, z]
Out[13]=  
      -2      2      4   z    2 z              3        5        2

-3 - a - 5 a - 2 a + -- + --- + 2 a z + 3 a z + 2 a z + 9 z -

                         3    a
                        a

  2      2                           3      3
 z    2 z        2  2      4  2   4 z    3 z       3      3  3
 -- + ---- + 10 a  z  + 4 a  z  - ---- - ---- + a z  - 3 a  z  - 
  4     2                           3     a
 a     a                           a

                    4      4                           5    5
    5  3       4   z    5 z        2  4      4  4   3 z    z
 3 a  z  - 11 z  + -- - ---- - 10 a  z  - 5 a  z  + ---- - -- - 
                    4     2                           3    a
                   a     a                           a

                                      6                          7
      5      3  5    5  5      6   4 z       2  6      4  6   3 z
 7 a z  - 2 a  z  + a  z  + 5 z  + ---- + 3 a  z  + 2 a  z  + ---- + 
                                     2                         a
                                    a

      7      3  7    8    2  8
5 a z + 2 a z + z + a z
In[14]:=
{Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[9, 24]][q, t]
Out[15]=  
5           1        1       1       3       1       4       3

- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  3      4               3        3  2      5  2    5  3      7  3
 ---- + --- + 3 q t + 4 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + 
  3     q t
 q  t

  9  4
q t