9 16: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=16|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-1,3,-5,4,-8,7,-6,9,-2,8,-7,6,-3,5,-4/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=16|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-1,3,-5,4,-8,7,-6,9,-2,8,-7,6,-3,5,-4/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 126: Line 118:
3 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
3 q t + q t + 2 q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:05, 28 August 2005

9 15.gif

9_15

9 17.gif

9_17

9 16.gif Visit 9 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 16's page at Knotilus!

Visit 9 16's page at the original Knot Atlas!

9 16 Quick Notes


9 16 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X16,6,17,5 X18,8,1,7 X6,18,7,17 X10,16,11,15 X14,10,15,9 X8,14,9,13 X2,12,3,11
Gauss code 1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4
Dowker-Thistlethwaite code 4 12 16 18 14 2 8 10 6
Conway Notation [3,3,2+]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [5][-16]
Hyperbolic Volume 9.88301
A-Polynomial See Data:9 16/A-polynomial

[edit Notes for 9 16's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 16's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 39, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (6, 14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 9 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
25         1-1
23        2 2
21       31 -2
19      32  1
17     43   -1
15    23    -1
13   34     1
11  12      -1
9  3       3
711        0
51         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 16]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 16]]
Out[3]=  
PD[X[4, 2, 5, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[18, 8, 1, 7], 
 X[6, 18, 7, 17], X[10, 16, 11, 15], X[14, 10, 15, 9], 

X[8, 14, 9, 13], X[2, 12, 3, 11]]
In[4]:=
GaussCode[Knot[9, 16]]
Out[4]=  
GaussCode[1, -9, 2, -1, 3, -5, 4, -8, 7, -6, 9, -2, 8, -7, 6, -3, 5, -4]
In[5]:=
BR[Knot[9, 16]]
Out[5]=  
BR[3, {1, 1, 1, 1, 2, 2, -1, 2, 2, 2}]
In[6]:=
alex = Alexander[Knot[9, 16]][t]
Out[6]=  
     2    5    8            2      3

-9 + -- - -- + - + 8 t - 5 t + 2 t

     3    2   t
t t
In[7]:=
Conway[Knot[9, 16]][z]
Out[7]=  
       2      4      6
1 + 6 z  + 7 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 16]}
In[9]:=
{KnotDet[Knot[9, 16]], KnotSignature[Knot[9, 16]]}
Out[9]=  
{39, 6}
In[10]:=
J=Jones[Knot[9, 16]][q]
Out[10]=  
 3    4      5      6      7      8      9      10      11    12
q  - q  + 4 q  - 5 q  + 6 q  - 7 q  + 6 q  - 5 q   + 3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 16]}
In[12]:=
A2Invariant[Knot[9, 16]][q]
Out[12]=  
 10      14    16      18    20      22      26    34    36
q   + 3 q   + q   + 2 q   + q   - 2 q   - 3 q   + q   - q
In[13]:=
Kauffman[Knot[9, 16]][a, z]
Out[13]=  
                                   2       2    2       2      2

-3 4 2 z 2 z 4 z 4 z z 2 z z 6 z 8 z -- - -- + --- + --- + --- + --- - --- + ---- + --- + ---- + ---- +

8    6    13    11    9     7     14    12     10     8      6

a a a a a a a a a a a

  3       3      3    3      3      4      4      4      4      4
 z     5 z    5 z    z    2 z    3 z    6 z    8 z    4 z    5 z
 --- - ---- - ---- - -- - ---- + ---- - ---- - ---- - ---- - ---- + 
  15    13     11     9     7     14     12     10      8      6
 a     a      a      a     a     a      a      a       a      a

    5    5       5      5      6      6    6    6      7      7    7
 5 z    z     8 z    2 z    5 z    3 z    z    z    3 z    4 z    z
 ---- - --- - ---- - ---- + ---- + ---- - -- + -- + ---- + ---- + -- + 
  13     11     9      7     12     10     8    6    11      9     7
 a      a      a      a     a      a      a    a    a       a     a

  8     8
 z     z
 --- + --
  10    8
a a
In[14]:=
{Vassiliev[2][Knot[9, 16]], Vassiliev[3][Knot[9, 16]]}
Out[14]=  
{0, 14}
In[15]:=
Kh[Knot[9, 16]][q, t]
Out[15]=  
 5    7    7        9  2    11  2      11  3      13  3      13  4

q + q + q t + 3 q t + q t + 2 q t + 3 q t + 4 q t +

    15  4      15  5      17  5      17  6      19  6      19  7
 2 q   t  + 3 q   t  + 4 q   t  + 3 q   t  + 3 q   t  + 2 q   t  + 

    21  7    21  8      23  8    25  9
3 q t + q t + 2 q t + q t