9 15
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 15's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X7,10,8,11 X3948 X9,3,10,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X11,1,12,18 X17,13,18,12 |
| Gauss code | -1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8 |
| Dowker-Thistlethwaite code | 4 8 14 10 2 18 16 6 12 |
| Conway Notation | [2322] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
|
![]() [{11, 4}, {5, 2}, {4, 10}, {1, 5}, {6, 11}, {3, 7}, {2, 6}, {8, 3}, {7, 9}, {10, 8}, {9, 1}] |
[edit Notes on presentations of 9 15]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 15"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X7,10,8,11 X3948 X9,3,10,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X11,1,12,18 X17,13,18,12 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -8, 9, -5, 6, -7, 5, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 14 10 2 18 16 6 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2322] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,1,1,2,-1,-3,2,4,-3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 4}, {5, 2}, {4, 10}, {1, 5}, {6, 11}, {3, 7}, {2, 6}, {8, 3}, {7, 9}, {10, 8}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+10 t-15+10 t^{-1} -2 t^{-2} } |
| Conway polynomial | |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 39, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^7-4 q^6+6 q^5-6 q^4+7 q^3-6 q^2+4 q-2+ q^{-1} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -z^4 a^{-4} -z^2 a^{-2} +2 z^2 a^{-6} +z^2- a^{-2} + a^{-4} + a^{-6} - a^{-8} +1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} +z^8 a^{-6} +2 z^7 a^{-3} +4 z^7 a^{-5} +2 z^7 a^{-7} +2 z^6 a^{-2} +z^6 a^{-4} +z^6 a^{-6} +2 z^6 a^{-8} +2 z^5 a^{-1} -z^5 a^{-3} -7 z^5 a^{-5} -3 z^5 a^{-7} +z^5 a^{-9} -4 z^4 a^{-6} -5 z^4 a^{-8} +z^4-3 z^3 a^{-1} +5 z^3 a^{-5} -z^3 a^{-7} -3 z^3 a^{-9} -3 z^2 a^{-2} -2 z^2 a^{-4} +2 z^2 a^{-6} +3 z^2 a^{-8} -2 z^2+z a^{-1} +z a^{-3} -z a^{-5} +z a^{-7} +2 z a^{-9} + a^{-2} + a^{-4} - a^{-6} - a^{-8} +1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4+2 q^{-2} -2 q^{-4} +2 q^{-12} +2 q^{-16} - q^{-20} + q^{-22} - q^{-24} - q^{-26} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-q^{16}+3 q^{14}-3 q^{12}+2 q^{10}-3 q^6+8 q^4-9 q^2+11-9 q^{-2} +5 q^{-4} +4 q^{-6} -13 q^{-8} +23 q^{-10} -26 q^{-12} +21 q^{-14} -13 q^{-16} -5 q^{-18} +20 q^{-20} -31 q^{-22} +33 q^{-24} -20 q^{-26} +2 q^{-28} +14 q^{-30} -23 q^{-32} +15 q^{-34} -2 q^{-36} -13 q^{-38} +24 q^{-40} -23 q^{-42} +9 q^{-44} +17 q^{-46} -34 q^{-48} +46 q^{-50} -42 q^{-52} +21 q^{-54} +6 q^{-56} -28 q^{-58} +43 q^{-60} -44 q^{-62} +36 q^{-64} -11 q^{-66} -11 q^{-68} +26 q^{-70} -30 q^{-72} +20 q^{-74} - q^{-76} -15 q^{-78} +21 q^{-80} -15 q^{-82} +3 q^{-84} +18 q^{-86} -31 q^{-88} +33 q^{-90} -23 q^{-92} +18 q^{-96} -32 q^{-98} +33 q^{-100} -24 q^{-102} +10 q^{-104} +3 q^{-106} -15 q^{-108} +17 q^{-110} -15 q^{-112} +9 q^{-114} -3 q^{-116} -2 q^{-118} +3 q^{-120} -4 q^{-122} +3 q^{-124} - q^{-126} + q^{-128} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 15"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+10 t-15+10 t^{-1} -2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^7-4 q^6+6 q^5-6 q^4+7 q^3-6 q^2+4 q-2+ q^{-1} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -z^4 a^{-4} -z^2 a^{-2} +2 z^2 a^{-6} +z^2- a^{-2} + a^{-4} + a^{-6} - a^{-8} +1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} +z^8 a^{-6} +2 z^7 a^{-3} +4 z^7 a^{-5} +2 z^7 a^{-7} +2 z^6 a^{-2} +z^6 a^{-4} +z^6 a^{-6} +2 z^6 a^{-8} +2 z^5 a^{-1} -z^5 a^{-3} -7 z^5 a^{-5} -3 z^5 a^{-7} +z^5 a^{-9} -4 z^4 a^{-6} -5 z^4 a^{-8} +z^4-3 z^3 a^{-1} +5 z^3 a^{-5} -z^3 a^{-7} -3 z^3 a^{-9} -3 z^2 a^{-2} -2 z^2 a^{-4} +2 z^2 a^{-6} +3 z^2 a^{-8} -2 z^2+z a^{-1} +z a^{-3} -z a^{-5} +z a^{-7} +2 z a^{-9} + a^{-2} + a^{-4} - a^{-6} - a^{-8} +1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_165, K11n63, K11n101,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 15"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -2t^{2}+10t-15+10t^{-1}-2t^{-2}} , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_165, K11n63, K11n101,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, 5) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23}-2 q^{22}+6 q^{20}-8 q^{19}-4 q^{18}+19 q^{17}-14 q^{16}-15 q^{15}+35 q^{14}-15 q^{13}-28 q^{12}+45 q^{11}-12 q^{10}-36 q^9+45 q^8-7 q^7-33 q^6+33 q^5-q^4-21 q^3+16 q^2+q-8+5 q^{-1} -2 q^{-3} + q^{-4} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{45}+2 q^{44}-2 q^{42}-3 q^{41}+7 q^{40}+5 q^{39}-10 q^{38}-14 q^{37}+16 q^{36}+24 q^{35}-14 q^{34}-44 q^{33}+13 q^{32}+60 q^{31}-q^{30}-79 q^{29}-17 q^{28}+97 q^{27}+35 q^{26}-105 q^{25}-60 q^{24}+116 q^{23}+76 q^{22}-113 q^{21}-100 q^{20}+118 q^{19}+106 q^{18}-107 q^{17}-119 q^{16}+101 q^{15}+116 q^{14}-82 q^{13}-114 q^{12}+66 q^{11}+102 q^{10}-46 q^9-84 q^8+28 q^7+64 q^6-13 q^5-46 q^4+8 q^3+26 q^2-2 q-16+3 q^{-1} +7 q^{-2} - q^{-3} -5 q^{-4} +3 q^{-5} + q^{-6} -2 q^{-8} + q^{-9} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-2 q^{73}+2 q^{71}-q^{70}+4 q^{69}-9 q^{68}-q^{67}+10 q^{66}+14 q^{64}-30 q^{63}-15 q^{62}+22 q^{61}+13 q^{60}+54 q^{59}-58 q^{58}-59 q^{57}+3 q^{56}+23 q^{55}+152 q^{54}-49 q^{53}-112 q^{52}-78 q^{51}-26 q^{50}+280 q^{49}+35 q^{48}-110 q^{47}-199 q^{46}-167 q^{45}+374 q^{44}+169 q^{43}-25 q^{42}-296 q^{41}-358 q^{40}+392 q^{39}+292 q^{38}+113 q^{37}-343 q^{36}-535 q^{35}+358 q^{34}+372 q^{33}+243 q^{32}-347 q^{31}-651 q^{30}+298 q^{29}+401 q^{28}+339 q^{27}-311 q^{26}-694 q^{25}+215 q^{24}+373 q^{23}+392 q^{22}-224 q^{21}-649 q^{20}+106 q^{19}+278 q^{18}+386 q^{17}-101 q^{16}-507 q^{15}+12 q^{14}+135 q^{13}+302 q^{12}+9 q^{11}-307 q^{10}-26 q^9+15 q^8+174 q^7+49 q^6-138 q^5-8 q^4-31 q^3+66 q^2+33 q-47+13 q^{-1} -24 q^{-2} +16 q^{-3} +10 q^{-4} -17 q^{-5} +14 q^{-6} -8 q^{-7} +3 q^{-8} + q^{-9} -7 q^{-10} +6 q^{-11} - q^{-12} + q^{-13} -2 q^{-15} + q^{-16} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{110}+2 q^{109}-2 q^{107}+q^{106}-2 q^{104}+5 q^{103}+2 q^{102}-9 q^{101}-3 q^{100}+3 q^{99}+2 q^{98}+16 q^{97}+9 q^{96}-20 q^{95}-29 q^{94}-12 q^{93}+11 q^{92}+50 q^{91}+54 q^{90}-11 q^{89}-71 q^{88}-92 q^{87}-40 q^{86}+80 q^{85}+160 q^{84}+104 q^{83}-44 q^{82}-203 q^{81}-234 q^{80}-35 q^{79}+234 q^{78}+343 q^{77}+197 q^{76}-177 q^{75}-483 q^{74}-406 q^{73}+65 q^{72}+552 q^{71}+644 q^{70}+162 q^{69}-568 q^{68}-898 q^{67}-440 q^{66}+505 q^{65}+1102 q^{64}+761 q^{63}-335 q^{62}-1276 q^{61}-1109 q^{60}+146 q^{59}+1372 q^{58}+1410 q^{57}+124 q^{56}-1421 q^{55}-1719 q^{54}-342 q^{53}+1418 q^{52}+1924 q^{51}+616 q^{50}-1401 q^{49}-2136 q^{48}-787 q^{47}+1341 q^{46}+2242 q^{45}+1010 q^{44}-1285 q^{43}-2365 q^{42}-1124 q^{41}+1188 q^{40}+2378 q^{39}+1299 q^{38}-1078 q^{37}-2400 q^{36}-1382 q^{35}+916 q^{34}+2309 q^{33}+1499 q^{32}-720 q^{31}-2188 q^{30}-1539 q^{29}+489 q^{28}+1958 q^{27}+1549 q^{26}-241 q^{25}-1669 q^{24}-1482 q^{23}+q^{22}+1332 q^{21}+1338 q^{20}+193 q^{19}-970 q^{18}-1129 q^{17}-328 q^{16}+630 q^{15}+900 q^{14}+368 q^{13}-357 q^{12}-632 q^{11}-356 q^{10}+144 q^9+423 q^8+291 q^7-39 q^6-228 q^5-209 q^4-32 q^3+120 q^2+128 q+39-38 q^{-1} -71 q^{-2} -41 q^{-3} +17 q^{-4} +26 q^{-5} +19 q^{-6} +13 q^{-7} -13 q^{-8} -17 q^{-9} +2 q^{-10} -2 q^{-11} -2 q^{-12} +12 q^{-13} +2 q^{-14} -6 q^{-15} +3 q^{-16} -3 q^{-17} -5 q^{-18} +4 q^{-19} +2 q^{-20} - q^{-21} + q^{-22} -2 q^{-24} + q^{-25} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{153}-2 q^{152}+2 q^{150}-q^{149}-2 q^{147}+6 q^{146}-6 q^{145}-3 q^{144}+11 q^{143}-q^{142}-2 q^{141}-13 q^{140}+12 q^{139}-14 q^{138}-8 q^{137}+36 q^{136}+14 q^{135}+4 q^{134}-42 q^{133}+9 q^{132}-56 q^{131}-40 q^{130}+78 q^{129}+73 q^{128}+74 q^{127}-47 q^{126}+18 q^{125}-169 q^{124}-189 q^{123}+32 q^{122}+127 q^{121}+245 q^{120}+106 q^{119}+225 q^{118}-239 q^{117}-465 q^{116}-296 q^{115}-103 q^{114}+287 q^{113}+379 q^{112}+870 q^{111}+139 q^{110}-498 q^{109}-797 q^{108}-869 q^{107}-338 q^{106}+251 q^{105}+1722 q^{104}+1220 q^{103}+356 q^{102}-797 q^{101}-1808 q^{100}-1854 q^{99}-973 q^{98}+1961 q^{97}+2517 q^{96}+2241 q^{95}+419 q^{94}-2012 q^{93}-3651 q^{92}-3328 q^{91}+884 q^{90}+3095 q^{89}+4451 q^{88}+2782 q^{87}-882 q^{86}-4793 q^{85}-6017 q^{84}-1336 q^{83}+2457 q^{82}+6087 q^{81}+5471 q^{80}+1273 q^{79}-4876 q^{78}-8170 q^{77}-3863 q^{76}+959 q^{75}+6803 q^{74}+7686 q^{73}+3621 q^{72}-4237 q^{71}-9459 q^{70}-5964 q^{69}-679 q^{68}+6860 q^{67}+9134 q^{66}+5537 q^{65}-3414 q^{64}-10060 q^{63}-7406 q^{62}-2014 q^{61}+6618 q^{60}+9940 q^{59}+6889 q^{58}-2632 q^{57}-10192 q^{56}-8327 q^{55}-3070 q^{54}+6131 q^{53}+10254 q^{52}+7867 q^{51}-1723 q^{50}-9805 q^{49}-8855 q^{48}-4092 q^{47}+5144 q^{46}+9955 q^{45}+8556 q^{44}-408 q^{43}-8580 q^{42}-8795 q^{41}-5116 q^{40}+3405 q^{39}+8681 q^{38}+8653 q^{37}+1237 q^{36}-6307 q^{35}-7713 q^{34}-5715 q^{33}+1143 q^{32}+6283 q^{31}+7664 q^{30}+2591 q^{29}-3415 q^{28}-5504 q^{27}-5290 q^{26}-813 q^{25}+3352 q^{24}+5548 q^{23}+2923 q^{22}-933 q^{21}-2863 q^{20}-3801 q^{19}-1647 q^{18}+976 q^{17}+3078 q^{16}+2182 q^{15}+326 q^{14}-831 q^{13}-2006 q^{12}-1377 q^{11}-174 q^{10}+1227 q^9+1096 q^8+480 q^7+99 q^6-724 q^5-722 q^4-356 q^3+333 q^2+346 q+231+252 q^{-1} -159 q^{-2} -254 q^{-3} -206 q^{-4} +67 q^{-5} +50 q^{-6} +41 q^{-7} +159 q^{-8} -11 q^{-9} -62 q^{-10} -79 q^{-11} +18 q^{-12} -10 q^{-13} -17 q^{-14} +69 q^{-15} +7 q^{-16} -8 q^{-17} -25 q^{-18} +10 q^{-19} -10 q^{-20} -18 q^{-21} +24 q^{-22} +3 q^{-23} +3 q^{-24} -7 q^{-25} +5 q^{-26} -3 q^{-27} -9 q^{-28} +6 q^{-29} +2 q^{-31} - q^{-32} + q^{-33} -2 q^{-35} + q^{-36} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




