9 14

From Knot Atlas
Jump to navigationJump to search

9 13.gif

9_13

9 15.gif

9_15

9 14.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 14 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6
Gauss code -1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5
Dowker-Thistlethwaite code 4 10 12 16 14 2 18 8 6
Conway Notation [41112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

9 14 ML.gif 9 14 AP.gif
[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 1}, {6, 2}, {5, 7}, {8, 6}, {7, 10}, {1, 8}]

[edit Notes on presentations of 9 14]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,7\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-7]
Hyperbolic Volume 8.95499
A-Polynomial See Data:9 14/A-polynomial

[edit Notes for 9 14's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 9 14's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^2-9 t+15-9 t^{-1} +2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^4-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 37, 0 }
Jones polynomial [math]\displaystyle{ q^6-2 q^5+3 q^4-5 q^3+6 q^2-6 q+6-4 q^{-1} +3 q^{-2} - q^{-3} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -2 z^2 a^{-4} +z^2+ a^{-2} -2 a^{-4} + a^{-6} +1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-2} +z^8 a^{-4} +3 z^7 a^{-1} +5 z^7 a^{-3} +2 z^7 a^{-5} +3 z^6 a^{-2} +z^6 a^{-6} +4 z^6+4 a z^5-4 z^5 a^{-1} -16 z^5 a^{-3} -8 z^5 a^{-5} +3 a^2 z^4-12 z^4 a^{-2} -9 z^4 a^{-4} -4 z^4 a^{-6} -4 z^4+a^3 z^3-3 a z^3+2 z^3 a^{-1} +15 z^3 a^{-3} +9 z^3 a^{-5} -2 a^2 z^2+8 z^2 a^{-2} +10 z^2 a^{-4} +4 z^2 a^{-6} -2 z a^{-1} -5 z a^{-3} -3 z a^{-5} - a^{-2} -2 a^{-4} - a^{-6} +1 }[/math]
The A2 invariant [math]\displaystyle{ -q^{10}+q^8+q^6-q^4+2 q^2+ q^{-2} + q^{-4} + q^{-8} -2 q^{-10} - q^{-12} - q^{-16} + q^{-18} + q^{-20} }[/math]
The G2 invariant [math]\displaystyle{ q^{52}-2 q^{50}+3 q^{48}-4 q^{46}+q^{44}-3 q^{40}+8 q^{38}-10 q^{36}+11 q^{34}-8 q^{32}+2 q^{30}+4 q^{28}-10 q^{26}+16 q^{24}-16 q^{22}+14 q^{20}-8 q^{18}-q^{16}+11 q^{14}-15 q^{12}+17 q^{10}-12 q^8+3 q^6+6 q^4-10 q^2+10-2 q^{-2} -6 q^{-4} +15 q^{-6} -16 q^{-8} +9 q^{-10} +5 q^{-12} -19 q^{-14} +30 q^{-16} -28 q^{-18} +18 q^{-20} -16 q^{-24} +28 q^{-26} -30 q^{-28} +23 q^{-30} -10 q^{-32} -6 q^{-34} +16 q^{-36} -19 q^{-38} +15 q^{-40} -5 q^{-42} -7 q^{-44} +11 q^{-46} -13 q^{-48} +5 q^{-50} +5 q^{-52} -16 q^{-54} +21 q^{-56} -19 q^{-58} +6 q^{-60} +8 q^{-62} -20 q^{-64} +25 q^{-66} -21 q^{-68} +11 q^{-70} + q^{-72} -10 q^{-74} +16 q^{-76} -14 q^{-78} +10 q^{-80} -2 q^{-82} -2 q^{-84} +3 q^{-86} -4 q^{-88} +3 q^{-90} - q^{-92} + q^{-94} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n53,}

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{110}{3} }[/math] [math]\displaystyle{ -\frac{34}{3} }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ \frac{128}{3} }[/math] [math]\displaystyle{ -48 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{440}{3} }[/math] [math]\displaystyle{ \frac{136}{3} }[/math] [math]\displaystyle{ \frac{10529}{30} }[/math] [math]\displaystyle{ \frac{1502}{15} }[/math] [math]\displaystyle{ \frac{4978}{45} }[/math] [math]\displaystyle{ -\frac{833}{18} }[/math] [math]\displaystyle{ \frac{449}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 9 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123456χ
13         11
11        1 -1
9       21 1
7      31  -2
5     32   1
3    33    0
1   33     0
-1  24      2
-3 12       -1
-5 2        2
-71         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials