K11n53

From Knot Atlas
Jump to navigationJump to search

K11n52.gif

K11n52

K11n54.gif

K11n54

K11n53.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n53 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,14,6,15 X2837 X9,16,10,17 X11,19,12,18 X13,6,14,7 X15,22,16,1 X17,20,18,21 X19,11,20,10 X21,12,22,13
Gauss code 1, -4, 2, -1, -3, 7, 4, -2, -5, 10, -6, 11, -7, 3, -8, 5, -9, 6, -10, 9, -11, 8
Dowker-Thistlethwaite code 4 8 -14 2 -16 -18 -6 -22 -20 -10 -12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n53 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11n53's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+4 t^2-8 t+11-8 t^{-1} +4 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-2 z^4-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 37, 0 }
Jones polynomial [math]\displaystyle{ -q^3+3 q^2-4 q+6-6 q^{-1} +6 q^{-2} -5 q^{-3} +3 q^{-4} -2 q^{-5} + q^{-6} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -a^2 z^6+a^4 z^4-5 a^2 z^4+2 z^4+3 a^4 z^2-9 a^2 z^2-z^2 a^{-2} +6 z^2+2 a^4-5 a^2- a^{-2} +5 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a^3 z^9+a z^9+2 a^4 z^8+4 a^2 z^8+2 z^8+2 a^5 z^7-a^3 z^7-2 a z^7+z^7 a^{-1} +a^6 z^6-7 a^4 z^6-17 a^2 z^6-9 z^6-8 a^5 z^5-7 a^3 z^5-a z^5-2 z^5 a^{-1} -4 a^6 z^4+6 a^4 z^4+27 a^2 z^4+3 z^4 a^{-2} +20 z^4+8 a^5 z^3+12 a^3 z^3+8 a z^3+5 z^3 a^{-1} +z^3 a^{-3} +3 a^6 z^2-4 a^4 z^2-19 a^2 z^2-4 z^2 a^{-2} -16 z^2-3 a^5 z-6 a^3 z-5 a z-3 z a^{-1} -z a^{-3} +2 a^4+5 a^2+ a^{-2} +5 }[/math]
The A2 invariant Data:K11n53/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n53/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_17,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {9_14,}

Vassiliev invariants

V2 and V3: (-1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{34}{3} }[/math] [math]\displaystyle{ \frac{62}{3} }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ -\frac{512}{3} }[/math] [math]\displaystyle{ -\frac{128}{3} }[/math] [math]\displaystyle{ -80 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ -\frac{136}{3} }[/math] [math]\displaystyle{ -\frac{248}{3} }[/math] [math]\displaystyle{ \frac{10289}{30} }[/math] [math]\displaystyle{ \frac{154}{5} }[/math] [math]\displaystyle{ \frac{2338}{45} }[/math] [math]\displaystyle{ \frac{1711}{18} }[/math] [math]\displaystyle{ -\frac{751}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11n53. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10123χ
7         1-1
5        2 2
3       21 -1
1      42  2
-1     33   0
-3    33    0
-5   23     1
-7  13      -2
-9 12       1
-11 1        -1
-131         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n52.gif

K11n52

K11n54.gif

K11n54