K11n52

From Knot Atlas
Jump to navigationJump to search

K11n51.gif

K11n51

K11n53.gif

K11n53

K11n52.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n52 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,14,6,15 X2837 X16,10,17,9 X18,11,19,12 X13,6,14,7 X22,16,1,15 X20,18,21,17 X10,19,11,20 X12,22,13,21
Gauss code 1, -4, 2, -1, -3, 7, 4, -2, 5, -10, 6, -11, -7, 3, 8, -5, 9, -6, 10, -9, 11, -8
Dowker-Thistlethwaite code 4 8 -14 2 16 18 -6 22 20 10 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n52 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11n52's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^3-6 t^2+14 t-17+14 t^{-1} -6 t^{-2} + t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ z^6-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 59, 2 }
Jones polynomial [math]\displaystyle{ -q^8+3 q^7-5 q^6+8 q^5-10 q^4+10 q^3-9 q^2+7 q-4+2 q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-4} -3 z^4 a^{-2} +4 z^4 a^{-4} -z^4 a^{-6} -8 z^2 a^{-2} +7 z^2 a^{-4} -2 z^2 a^{-6} +2 z^2-5 a^{-2} +4 a^{-4} - a^{-6} +3 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-3} +z^9 a^{-5} +2 z^8 a^{-2} +5 z^8 a^{-4} +3 z^8 a^{-6} +z^7 a^{-1} +z^7 a^{-3} +4 z^7 a^{-5} +4 z^7 a^{-7} -5 z^6 a^{-2} -12 z^6 a^{-4} -4 z^6 a^{-6} +3 z^6 a^{-8} +z^5 a^{-1} -2 z^5 a^{-3} -13 z^5 a^{-5} -9 z^5 a^{-7} +z^5 a^{-9} +14 z^4 a^{-2} +18 z^4 a^{-4} -7 z^4 a^{-8} +3 z^4-3 z^3 a^{-1} +4 z^3 a^{-3} +15 z^3 a^{-5} +6 z^3 a^{-7} -2 z^3 a^{-9} -17 z^2 a^{-2} -13 z^2 a^{-4} +z^2 a^{-6} +3 z^2 a^{-8} -6 z^2-3 z a^{-3} -5 z a^{-5} -2 z a^{-7} +5 a^{-2} +4 a^{-4} + a^{-6} +3 }[/math]
The A2 invariant Data:K11n52/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n52/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_32, K11n124,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{82}{3} }[/math] [math]\displaystyle{ \frac{14}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{328}{3} }[/math] [math]\displaystyle{ -\frac{56}{3} }[/math] [math]\displaystyle{ -\frac{6751}{30} }[/math] [math]\displaystyle{ -\frac{806}{5} }[/math] [math]\displaystyle{ -\frac{1022}{45} }[/math] [math]\displaystyle{ -\frac{65}{18} }[/math] [math]\displaystyle{ \frac{449}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11n52. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        2 2
13       31 -2
11      52  3
9     53   -2
7    55    0
5   45     1
3  35      -2
1 25       3
-1 2        -2
-32         2
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n51.gif

K11n51

K11n53.gif

K11n53