7 2: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
| ⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
| ⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
| Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
||
| Line 45: | Line 38: | ||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 109: | Line 101: | ||
q t q t q t</nowiki></pre></td></tr> |
q t q t q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
|||
Revision as of 19:10, 28 August 2005
|
|
|
|
Visit 7 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 7 2's page at Knotilus! Visit 7 2's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X1425 X3,10,4,11 X5,14,6,1 X7,12,8,13 X11,8,12,9 X13,6,14,7 X9,2,10,3 |
| Gauss code | -1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3 |
| Dowker-Thistlethwaite code | 4 10 14 12 2 8 6 |
| Conway Notation | [52] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 3 t+3 t^{-1} -5 }[/math] |
| Conway polynomial | [math]\displaystyle{ 3 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 11, -2 } |
| Jones polynomial | [math]\displaystyle{ - q^{-8} + q^{-7} - q^{-6} +2 q^{-5} -2 q^{-4} +2 q^{-3} - q^{-2} + q^{-1} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^8+a^6 z^2+a^6+a^4 z^2+a^2 z^2+a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^9 z^5-4 a^9 z^3+3 a^9 z+a^8 z^6-4 a^8 z^4+4 a^8 z^2-a^8+2 a^7 z^5-6 a^7 z^3+3 a^7 z+a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+a^5 z^5-a^5 z^3+a^4 z^4+a^3 z^3+a^2 z^2-a^2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{26}-q^{24}+q^{18}+q^{16}+q^8+q^6+q^2 }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{128}+q^{124}-q^{122}-q^{116}+2 q^{114}-2 q^{112}-q^{110}-q^{106}-2 q^{102}-2 q^{100}-q^{92}-q^{90}+2 q^{88}+q^{78}+3 q^{74}+q^{70}+q^{68}-q^{66}+2 q^{64}-q^{60}+q^{54}-q^{50}-q^{40}+q^{38}+q^{36}+q^{34}+q^{28}+q^{24}+q^{20}+q^{14}+q^{10} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{17}+q^{11}+q^5+q }[/math] |
| 2 | [math]\displaystyle{ q^{48}-q^{44}-q^{38}+q^{34}-q^{26}-q^{24}+2 q^{14}+q^{12}+q^8+q^2 }[/math] |
| 3 | [math]\displaystyle{ -q^{93}+q^{89}+q^{87}-q^{83}+q^{79}-q^{75}-q^{73}+q^{69}+q^{61}+q^{59}-q^{55}-q^{49}-q^{47}-q^{41}-q^{39}+q^{33}-q^{29}+q^{25}+q^{23}+q^{17}+q^{15}+q^{13}+q^{11}+q^3 }[/math] |
| 4 | [math]\displaystyle{ q^{152}-q^{148}-q^{146}-q^{144}+q^{142}+q^{140}+q^{138}-2 q^{134}+q^{130}+q^{128}+q^{126}-q^{124}-q^{122}-q^{120}+q^{116}-q^{110}-q^{108}+q^{104}+2 q^{102}-q^{98}+q^{94}+2 q^{92}-2 q^{88}-q^{86}+q^{82}-q^{78}+q^{74}+q^{72}-q^{68}+q^{64}-q^{60}-q^{58}-2 q^{56}-2 q^{54}-q^{52}+q^{50}+q^{48}-q^{46}-q^{44}-2 q^{42}+q^{40}+3 q^{38}+2 q^{36}-2 q^{32}+2 q^{28}+q^{26}+q^{24}-q^{22}+q^{18}+q^{16}+2 q^{14}+q^4 }[/math] |
| 5 | [math]\displaystyle{ -q^{225}+q^{221}+q^{219}+q^{217}-q^{213}-2 q^{211}-q^{209}+q^{205}+2 q^{203}+q^{201}-q^{199}-2 q^{197}-q^{195}+q^{191}+2 q^{189}+q^{187}-q^{183}-q^{181}-q^{179}+q^{175}+q^{173}+q^{171}-q^{167}-2 q^{165}-2 q^{163}+2 q^{159}+2 q^{157}-2 q^{153}-2 q^{151}-q^{149}+2 q^{147}+4 q^{145}+2 q^{143}-q^{141}-2 q^{139}-2 q^{137}+2 q^{133}+q^{131}-q^{129}-3 q^{127}-2 q^{125}+2 q^{121}+2 q^{119}+q^{117}-q^{115}-q^{113}+q^{111}+2 q^{109}+q^{107}-q^{103}+2 q^{99}+q^{97}-q^{93}-q^{91}-q^{89}-3 q^{77}-3 q^{75}-2 q^{73}+q^{71}+2 q^{69}+3 q^{67}+q^{65}-3 q^{63}-5 q^{61}-3 q^{59}+2 q^{57}+4 q^{55}+3 q^{53}-q^{51}-4 q^{49}-3 q^{47}+q^{45}+4 q^{43}+3 q^{41}-q^{37}-q^{35}+q^{33}+2 q^{31}+2 q^{29}-q^{25}+q^{19}+2 q^{17}+q^{15}+q^5 }[/math] |
| 6 | [math]\displaystyle{ q^{312}-q^{308}-q^{306}-q^{304}+2 q^{298}+2 q^{296}+q^{294}-q^{290}-2 q^{288}-3 q^{286}+q^{282}+2 q^{280}+2 q^{278}+q^{276}-3 q^{272}-2 q^{270}-q^{268}+q^{264}+2 q^{262}+2 q^{260}-q^{254}-q^{252}-2 q^{250}-q^{248}+q^{246}+q^{244}+2 q^{242}+2 q^{240}+2 q^{238}-q^{236}-3 q^{234}-3 q^{232}-2 q^{230}+q^{228}+3 q^{226}+4 q^{224}+q^{222}-2 q^{220}-4 q^{218}-5 q^{216}-2 q^{214}+2 q^{212}+5 q^{210}+4 q^{208}+2 q^{206}-q^{204}-4 q^{202}-3 q^{200}+3 q^{196}+4 q^{194}+3 q^{192}-4 q^{188}-5 q^{186}-3 q^{184}+2 q^{180}+3 q^{178}+2 q^{176}-2 q^{174}-4 q^{172}-2 q^{170}+q^{168}+3 q^{166}+3 q^{164}+2 q^{162}-q^{160}-4 q^{158}-2 q^{156}+q^{154}+2 q^{152}+2 q^{150}+q^{148}-q^{146}-2 q^{144}+2 q^{140}+q^{138}-q^{134}-q^{132}-q^{130}+q^{128}+2 q^{126}+2 q^{124}+q^{122}-q^{114}-q^{112}+q^{110}+2 q^{108}+2 q^{106}+q^{104}-q^{102}-4 q^{100}-6 q^{98}-4 q^{96}-q^{94}+2 q^{92}+6 q^{90}+4 q^{88}-q^{86}-6 q^{84}-7 q^{82}-5 q^{80}+6 q^{76}+7 q^{74}+3 q^{72}-3 q^{70}-5 q^{68}-4 q^{66}-q^{64}+4 q^{62}+4 q^{60}+q^{58}-2 q^{56}-2 q^{54}-q^{52}+3 q^{48}+2 q^{46}-q^{42}+q^{38}+q^{36}+3 q^{34}+q^{32}-q^{28}+2 q^{20}+q^{18}+q^{16}+q^6 }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{26}-q^{24}+q^{18}+q^{16}+q^8+q^6+q^2 }[/math] |
| 1,1 | [math]\displaystyle{ q^{68}+2 q^{64}-2 q^{62}+2 q^{60}-4 q^{58}-2 q^{54}+2 q^{50}+4 q^{46}-3 q^{44}+2 q^{42}-4 q^{40}+2 q^{38}-4 q^{36}-2 q^{32}-2 q^{30}+2 q^{24}+2 q^{22}+3 q^{20}+2 q^{18}+2 q^{16}+2 q^{12}+2 q^8+q^4 }[/math] |
| 2,0 | [math]\displaystyle{ q^{66}+q^{64}+q^{62}-q^{60}-q^{58}-q^{56}-q^{54}-q^{52}-q^{50}+q^{48}+q^{46}+q^{44}-q^{38}-2 q^{36}-2 q^{34}-q^{32}+q^{26}+q^{24}+q^{22}+3 q^{20}+2 q^{18}+q^{16}+q^{12}+q^{10}+q^4 }[/math] |
| 3,0 | [math]\displaystyle{ -q^{120}-q^{118}-q^{116}+2 q^{112}+2 q^{110}+2 q^{108}-2 q^{96}-2 q^{94}-2 q^{92}+q^{88}+q^{86}+q^{84}+q^{82}+2 q^{80}+3 q^{78}+2 q^{76}-q^{72}-2 q^{70}-q^{68}-3 q^{66}-3 q^{64}-3 q^{62}-q^{60}-q^{56}-q^{54}-q^{52}-q^{48}-q^{40}-q^{38}+2 q^{36}+3 q^{34}+3 q^{32}+2 q^{30}+2 q^{26}+3 q^{24}+3 q^{22}+q^{20}+q^{16}+q^{14}+q^6 }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{54}+q^{50}-q^{46}-q^{44}-2 q^{42}-2 q^{40}-q^{38}-q^{34}+q^{32}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{16}+q^{12}+2 q^{10}+q^8+q^4 }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{35}-q^{33}-q^{31}+q^{25}+q^{23}+q^{21}+q^{11}+q^9+q^7+q^3 }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{72}+q^{70}+q^{68}+q^{66}+q^{64}-q^{62}-2 q^{60}-2 q^{58}-2 q^{56}-3 q^{54}-3 q^{52}-q^{50}-q^{48}-q^{46}+q^{42}+q^{40}+2 q^{38}+2 q^{36}+2 q^{34}+q^{32}+q^{30}+q^{28}+q^{22}+q^{20}+q^{18}+q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^6 }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{44}-q^{42}-q^{40}-q^{38}+q^{32}+q^{30}+q^{28}+q^{26}+q^{14}+q^{12}+q^{10}+q^8+q^4 }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{54}-q^{50}-q^{46}+q^{44}+q^{38}+q^{34}-q^{32}+q^{30}-q^{28}+q^{26}-q^{24}+q^{22}+q^{16}+q^{12}+q^8+q^4 }[/math] |
| 1,0 | [math]\displaystyle{ q^{88}+q^{80}-q^{76}-q^{74}-q^{68}-q^{66}-q^{64}-q^{56}+q^{44}+q^{42}+q^{36}+q^{34}+q^{26}+q^{18}+q^{16}+q^{14}+q^6 }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{74}+q^{70}+q^{66}-q^{64}-q^{62}-2 q^{60}-2 q^{58}-2 q^{56}-2 q^{54}-q^{52}-q^{50}+q^{48}+2 q^{44}+q^{42}+2 q^{40}+2 q^{36}+q^{32}+q^{22}+q^{18}+q^{16}+2 q^{14}+q^{12}+q^{10}+q^6 }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{128}+q^{124}-q^{122}-q^{116}+2 q^{114}-2 q^{112}-q^{110}-q^{106}-2 q^{102}-2 q^{100}-q^{92}-q^{90}+2 q^{88}+q^{78}+3 q^{74}+q^{70}+q^{68}-q^{66}+2 q^{64}-q^{60}+q^{54}-q^{50}-q^{40}+q^{38}+q^{36}+q^{34}+q^{28}+q^{24}+q^{20}+q^{14}+q^{10} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 3 t+3 t^{-1} -5 }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 3 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 11, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ - q^{-8} + q^{-7} - q^{-6} +2 q^{-5} -2 q^{-4} +2 q^{-3} - q^{-2} + q^{-1} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^8+a^6 z^2+a^6+a^4 z^2+a^2 z^2+a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^9 z^5-4 a^9 z^3+3 a^9 z+a^8 z^6-4 a^8 z^4+4 a^8 z^2-a^8+2 a^7 z^5-6 a^7 z^3+3 a^7 z+a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+a^5 z^5-a^5 z^3+a^4 z^4+a^3 z^3+a^2 z^2-a^2 }[/math] |
Vassiliev invariants
| V2 and V3: | (3, -6) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 7 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[7, 2]] |
Out[2]= | 7 |
In[3]:= | PD[Knot[7, 2]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 1], X[7, 12, 8, 13], X[11, 8, 12, 9], X[13, 6, 14, 7], X[9, 2, 10, 3]] |
In[4]:= | GaussCode[Knot[7, 2]] |
Out[4]= | GaussCode[-1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3] |
In[5]:= | BR[Knot[7, 2]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, -2, -3, 2, -3}] |
In[6]:= | alex = Alexander[Knot[7, 2]][t] |
Out[6]= | 3 |
In[7]:= | Conway[Knot[7, 2]][z] |
Out[7]= | 2 1 + 3 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[7, 2]} |
In[9]:= | {KnotDet[Knot[7, 2]], KnotSignature[Knot[7, 2]]} |
Out[9]= | {11, -2} |
In[10]:= | J=Jones[Knot[7, 2]][q] |
Out[10]= | -8 -7 -6 2 2 2 -2 1 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[7, 2], Knot[11, NonAlternating, 88]} |
In[12]:= | A2Invariant[Knot[7, 2]][q] |
Out[12]= | -26 -24 -18 -16 -8 -6 -2 -q - q + q + q + q + q + q |
In[13]:= | Kauffman[Knot[7, 2]][a, z] |
Out[13]= | 2 6 8 7 9 2 2 6 2 8 2 3 3 |
In[14]:= | {Vassiliev[2][Knot[7, 2]], Vassiliev[3][Knot[7, 2]]} |
Out[14]= | {0, -6} |
In[15]:= | Kh[Knot[7, 2]][q, t] |
Out[15]= | -3 1 1 1 1 1 1 1 1 |


