7 3: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=7|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,5,-1,3,-4,6,-2,7,-5,4,-3/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=7|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,5,-1,3,-4,6,-2,7,-5,4,-3/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
Line 45: Line 38:
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 107: Line 99:
2 q t + q t + q t</nowiki></pre></td></tr>
2 q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:09, 28 August 2005

7 2.gif

7_2

7 4.gif

7_4

7 3.gif Visit 7 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 3's page at Knotilus!

Visit 7 3's page at the original Knot Atlas!

7 3 Quick Notes


7 3 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X14,8,1,7 X8,14,9,13 X12,6,13,5 X2,10,3,9 X4,12,5,11
Gauss code 1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3
Dowker-Thistlethwaite code 6 10 12 14 2 4 8
Conway Notation [43]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{$\$$Failed}}
Hyperbolic Volume 4.59213
A-Polynomial See Data:7 3/A-polynomial

[edit Notes for 7 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 7 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 13, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (5, 11)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 7 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567χ
19       1-1
17        0
15     21 -1
13    1   1
11   12   1
9  11    0
7  1     1
511      0
31       1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[7, 3]]
Out[2]=  
7
In[3]:=
PD[Knot[7, 3]]
Out[3]=  
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[14, 8, 1, 7], X[8, 14, 9, 13], 
  X[12, 6, 13, 5], X[2, 10, 3, 9], X[4, 12, 5, 11]]
In[4]:=
GaussCode[Knot[7, 3]]
Out[4]=  
GaussCode[1, -6, 2, -7, 5, -1, 3, -4, 6, -2, 7, -5, 4, -3]
In[5]:=
BR[Knot[7, 3]]
Out[5]=  
BR[3, {1, 1, 1, 1, 1, 2, -1, 2}]
In[6]:=
alex = Alexander[Knot[7, 3]][t]
Out[6]=  
    2    3            2

3 + -- - - - 3 t + 2 t

    2   t
t
In[7]:=
Conway[Knot[7, 3]][z]
Out[7]=  
       2      4
1 + 5 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[7, 3]}
In[9]:=
{KnotDet[Knot[7, 3]], KnotSignature[Knot[7, 3]]}
Out[9]=  
{13, 4}
In[10]:=
J=Jones[Knot[7, 3]][q]
Out[10]=  
 2    3      4      5      6      7    8    9
q  - q  + 2 q  - 2 q  + 3 q  - 2 q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[7, 3]}
In[12]:=
A2Invariant[Knot[7, 3]][q]
Out[12]=  
 6    10    14      16    18    20    22    24    26    28
q  + q   + q   + 2 q   + q   + q   - q   - q   - q   - q
In[13]:=
Kauffman[Knot[7, 3]][a, z]
Out[13]=  
                                  2       2      2      2    3     3

-2 2 -4 2 z z 3 z z 6 z 4 z 3 z z z -- - -- + a - --- + -- + --- - --- + ---- + ---- - ---- + --- - -- -

8    6          11    9    7     10     8      6      4     11    9

a a a a a a a a a a a

    3      3    4       4      4    4    5      5    5    6    6
 4 z    2 z    z     3 z    3 z    z    z    2 z    z    z    z
 ---- - ---- + --- - ---- - ---- + -- + -- + ---- + -- + -- + --
   7      5     10     8      6     4    9     7     5    8    6
a a a a a a a a a a a
In[14]:=
{Vassiliev[2][Knot[7, 3]], Vassiliev[3][Knot[7, 3]]}
Out[14]=  
{0, 11}
In[15]:=
Kh[Knot[7, 3]][q, t]
Out[15]=  
 3    5    5      7  2    9  2    9  3    11  3      11  4    13  4

q + q + q t + q t + q t + q t + q t + 2 q t + q t +

    15  5    15  6    19  7
2 q t + q t + q t