8 7: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=8|k=7|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,6,-5,7,-8,2,-3,4,-6,5,-7,3/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=8|k=7|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,-4,6,-5,7,-8,2,-3,4,-6,5,-7,3/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
Line 46: Line 39:
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 117: Line 109:
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr>
2 q t + 2 q t + q t + 2 q t + q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:08, 28 August 2005

8 6.gif

8_6

8 8.gif

8_8

8 7.gif Visit 8 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 7's page at Knotilus!

Visit 8 7's page at the original Knot Atlas!

8 7 Quick Notes


8 7 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,1,12,16 X5,13,6,12 X7,15,8,14 X13,7,14,6 X15,9,16,8 X9,2,10,3
Gauss code -1, 8, -2, 1, -4, 6, -5, 7, -8, 2, -3, 4, -6, 5, -7, 3
Dowker-Thistlethwaite code 4 10 12 14 2 16 6 8
Conway Notation [4112]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-8]
Hyperbolic Volume 7.0222
A-Polynomial See Data:8 7/A-polynomial

[edit Notes for 8 7's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 8 7's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 23, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (2, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 8 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345χ
13        1-1
11       1 1
9      21 -1
7     21  1
5    22   0
3   22    0
1  13     2
-1 11      0
-3 1       1
-51        -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[8, 7]]
Out[2]=  
8
In[3]:=
PD[Knot[8, 7]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 16], X[5, 13, 6, 12], 
  X[7, 15, 8, 14], X[13, 7, 14, 6], X[15, 9, 16, 8], X[9, 2, 10, 3]]
In[4]:=
GaussCode[Knot[8, 7]]
Out[4]=  
GaussCode[-1, 8, -2, 1, -4, 6, -5, 7, -8, 2, -3, 4, -6, 5, -7, 3]
In[5]:=
BR[Knot[8, 7]]
Out[5]=  
BR[3, {1, 1, 1, 1, -2, 1, -2, -2}]
In[6]:=
alex = Alexander[Knot[8, 7]][t]
Out[6]=  
      -3   3    5            2    3

-5 + t - -- + - + 5 t - 3 t + t

           2   t
t
In[7]:=
Conway[Knot[8, 7]][z]
Out[7]=  
       2      4    6
1 + 2 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 7], Knot[11, NonAlternating, 24]}
In[9]:=
{KnotDet[Knot[8, 7]], KnotSignature[Knot[8, 7]]}
Out[9]=  
{23, 2}
In[10]:=
J=Jones[Knot[8, 7]][q]
Out[10]=  
      -2   2            2      3      4      5    6

-2 - q + - + 4 q - 4 q + 4 q - 3 q + 2 q - q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 7]}
In[12]:=
A2Invariant[Knot[8, 7]][q]
Out[12]=  
     -6      2      6    10    14    18
1 - q   + 2 q  + 2 q  + q   - q   - q
In[13]:=
Kauffman[Knot[8, 7]][a, z]
Out[13]=  
                                                2      2       2    3
    2    4    z    2 z   2 z            2   2 z    4 z    12 z    z

-1 - -- - -- - -- + --- + --- + a z + 6 z - ---- + ---- + ----- + -- -

     4    2    7    3     a                   6      4      2      7
    a    a    a    a                         a      a      a      a

  3      3      3                      4      4       4      5    5
 z    2 z    3 z         3      4   2 z    3 z    12 z    2 z    z
 -- - ---- - ---- - 3 a z  - 7 z  + ---- - ---- - ----- + ---- - -- + 
  5     3     a                       6      4      2       5    a
 a     a                             a      a      a       a

                  6      6    7    7
    5      6   2 z    4 z    z    z
 a z  + 2 z  + ---- + ---- + -- + --
                 4      2     3   a
a a a
In[14]:=
{Vassiliev[2][Knot[8, 7]], Vassiliev[3][Knot[8, 7]]}
Out[14]=  
{0, 2}
In[15]:=
Kh[Knot[8, 7]][q, t]
Out[15]=  
         3     1       1      1      1    q      3        5

3 q + 2 q + ----- + ----- + ---- + --- + - + 2 q t + 2 q t +

             5  3    3  2      2   q t   t
            q  t    q  t    q t

    5  2      7  2    7  3      9  3    9  4    11  4    13  5
2 q t + 2 q t + q t + 2 q t + q t + q t + q t