8 6

From Knot Atlas
Jump to navigationJump to search

8 5.gif

8_5

8 7.gif

8_7

8 6.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 6 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X7,16,8,1 X15,6,16,7 X13,8,14,9
Gauss code -1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6
Dowker-Thistlethwaite code 4 10 14 16 12 2 8 6
Conway Notation [332]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

8 6 ML.gif 8 6 AP.gif
[{10, 3}, {4, 2}, {3, 9}, {1, 4}, {8, 10}, {9, 5}, {2, 6}, {5, 7}, {6, 8}, {7, 1}]

[edit Notes on presentations of 8 6]

Knot 8_6.
A graph, knot 8_6.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-1]
Hyperbolic Volume 7.47524
A-Polynomial See Data:8 6/A-polynomial

[edit Notes for 8 6's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -2

[edit Notes for 8 6's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^2+6 t-7+6 t^{-1} -2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^4-2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 23, -2 }
Jones polynomial [math]\displaystyle{ q-1+3 q^{-1} -4 q^{-2} +4 q^{-3} -4 q^{-4} +3 q^{-5} -2 q^{-6} + q^{-7} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^2 a^6+a^6-z^4 a^4-2 z^2 a^4-a^4-z^4 a^2-2 z^2 a^2-a^2+z^2+2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^4 a^8-2 z^2 a^8+2 z^5 a^7-4 z^3 a^7+z a^7+2 z^6 a^6-4 z^4 a^6+3 z^2 a^6-a^6+z^7 a^5-z^5 a^5+2 z^3 a^5-z a^5+3 z^6 a^4-6 z^4 a^4+6 z^2 a^4-a^4+z^7 a^3-2 z^5 a^3+5 z^3 a^3-3 z a^3+z^6 a^2-2 z^2 a^2+a^2+z^5 a-z^3 a-z a+z^4-3 z^2+2 }[/math]
The A2 invariant [math]\displaystyle{ q^{22}+q^{16}-q^{14}-q^{10}-q^8-q^4+2 q^2+1+ q^{-2} + q^{-4} }[/math]
The G2 invariant [math]\displaystyle{ q^{114}-q^{112}+2 q^{110}-3 q^{108}+q^{106}-3 q^{102}+6 q^{100}-7 q^{98}+7 q^{96}-4 q^{94}-2 q^{92}+7 q^{90}-9 q^{88}+11 q^{86}-6 q^{84}+q^{82}+5 q^{80}-7 q^{78}+7 q^{76}-2 q^{74}-3 q^{72}+6 q^{70}-5 q^{68}+2 q^{66}+4 q^{64}-9 q^{62}+12 q^{60}-10 q^{58}+5 q^{56}+q^{54}-10 q^{52}+13 q^{50}-13 q^{48}+10 q^{46}-5 q^{44}-3 q^{42}+7 q^{40}-10 q^{38}+6 q^{36}-3 q^{34}-4 q^{32}+5 q^{30}-5 q^{28}-q^{26}+6 q^{24}-8 q^{22}+8 q^{20}-6 q^{18}-q^{16}+6 q^{14}-8 q^{12}+10 q^{10}-5 q^8+3 q^6+2 q^4-2 q^2+4-3 q^{-2} +4 q^{-4} - q^{-6} + q^{-8} + q^{-10} - q^{-12} +2 q^{-14} + q^{-18} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n20, K11n151, K11n152,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{68}{3} }[/math] [math]\displaystyle{ \frac{100}{3} }[/math] [math]\displaystyle{ -192 }[/math] [math]\displaystyle{ -336 }[/math] [math]\displaystyle{ -96 }[/math] [math]\displaystyle{ -104 }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ -\frac{544}{3} }[/math] [math]\displaystyle{ -\frac{800}{3} }[/math] [math]\displaystyle{ \frac{10529}{15} }[/math] [math]\displaystyle{ \frac{2804}{15} }[/math] [math]\displaystyle{ -\frac{964}{45} }[/math] [math]\displaystyle{ \frac{1231}{9} }[/math] [math]\displaystyle{ -\frac{1471}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 8 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012χ
3        11
1         0
-1      31 2
-3     21  -1
-5    22   0
-7   22    0
-9  12     -1
-11 12      1
-13 1       -1
-151        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials