8 5

From Knot Atlas
Jump to navigationJump to search

8 4.gif

8_4

8 6.gif

8_6

8 5.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 5 at Knotilus!

8 5 is also known as the pretzel knot P(3,3,2).


Symmetric alternative representation
Pretzel P(3,3,2) form Photo 01-09-2017 besalu.jpg.
Sum of 8.5 ; church of Besalu, Catalogna

Knot presentations

Planar diagram presentation X6271 X8493 X2837 X14,10,15,9 X12,5,13,6 X4,13,5,14 X16,12,1,11 X10,16,11,15
Gauss code 1, -3, 2, -6, 5, -1, 3, -2, 4, -8, 7, -5, 6, -4, 8, -7
Dowker-Thistlethwaite code 6 8 12 2 14 16 4 10
Conway Notation [3,3,2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

8 5 ML.gif 8 5 AP.gif
[{6, 11}, {1, 10}, {11, 9}, {10, 4}, {8, 3}, {9, 7}, {5, 8}, {4, 2}, {3, 6}, {2, 5}, {7, 1}]

[edit Notes on presentations of 8 5]

Knot 8_5.
A graph, knot 8_5.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-11]
Hyperbolic Volume 6.99719
A-Polynomial See Data:8 5/A-polynomial

[edit Notes for 8 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for 8 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+3 t^2-4 t+5-4 t^{-1} +3 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-3 z^4-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 21, 4 }
Jones polynomial [math]\displaystyle{ q^8-2 q^7+3 q^6-4 q^5+3 q^4-3 q^3+3 q^2-q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} +z^4 a^{-2} -5 z^4 a^{-4} +z^4 a^{-6} +4 z^2 a^{-2} -8 z^2 a^{-4} +3 z^2 a^{-6} +4 a^{-2} -5 a^{-4} +2 a^{-6} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^7 a^{-3} +z^7 a^{-5} +z^6 a^{-2} +4 z^6 a^{-4} +3 z^6 a^{-6} -3 z^5 a^{-3} +z^5 a^{-5} +4 z^5 a^{-7} -5 z^4 a^{-2} -15 z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} -10 z^3 a^{-5} -8 z^3 a^{-7} +2 z^3 a^{-9} +8 z^2 a^{-2} +15 z^2 a^{-4} +4 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} +3 z a^{-3} +7 z a^{-5} +4 z a^{-7} -4 a^{-2} -5 a^{-4} -2 a^{-6} }[/math]
The A2 invariant [math]\displaystyle{ 1+ q^{-2} +2 q^{-4} +2 q^{-6} -3 q^{-12} - q^{-14} - q^{-16} + q^{-20} + q^{-24} }[/math]
The G2 invariant [math]\displaystyle{ q^{-2} +3 q^{-6} -2 q^{-8} +2 q^{-10} + q^{-12} -2 q^{-14} +7 q^{-16} -5 q^{-18} +5 q^{-20} + q^{-22} -2 q^{-24} +8 q^{-26} -5 q^{-28} +5 q^{-30} +2 q^{-32} -2 q^{-34} +3 q^{-36} -3 q^{-38} +2 q^{-42} -4 q^{-44} +2 q^{-46} -4 q^{-48} -2 q^{-50} +2 q^{-52} -9 q^{-54} +4 q^{-56} -7 q^{-58} + q^{-62} -7 q^{-64} +7 q^{-66} -7 q^{-68} +4 q^{-70} +2 q^{-72} -5 q^{-74} +5 q^{-76} -2 q^{-78} + q^{-80} +4 q^{-82} -2 q^{-84} +3 q^{-86} + q^{-88} - q^{-90} +4 q^{-92} -4 q^{-94} +3 q^{-96} -2 q^{-100} +3 q^{-102} -3 q^{-104} +3 q^{-106} - q^{-108} + q^{-110} -3 q^{-114} +2 q^{-116} -2 q^{-118} +2 q^{-120} - q^{-122} - q^{-128} + q^{-130} - q^{-132} + q^{-134} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_141,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-1, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ -24 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{62}{3} }[/math] [math]\displaystyle{ \frac{86}{3} }[/math] [math]\displaystyle{ 96 }[/math] [math]\displaystyle{ 208 }[/math] [math]\displaystyle{ 96 }[/math] [math]\displaystyle{ 104 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ \frac{248}{3} }[/math] [math]\displaystyle{ -\frac{344}{3} }[/math] [math]\displaystyle{ \frac{31409}{30} }[/math] [math]\displaystyle{ \frac{834}{5} }[/math] [math]\displaystyle{ \frac{16618}{45} }[/math] [math]\displaystyle{ \frac{2095}{18} }[/math] [math]\displaystyle{ -\frac{1231}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of 8 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456χ
17        11
15       1 -1
13      21 1
11     21  -1
9    12   -1
7   22    0
5  11     0
3 13      2
1         0
-11        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials