K11n152

From Knot Atlas
Jump to navigationJump to search

K11n151.gif

K11n151

K11n153.gif

K11n153

K11n152.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n152 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X8493 X12,5,13,6 X2837 X9,19,10,18 X11,20,12,21 X4,13,5,14 X15,11,16,10 X17,1,18,22 X19,14,20,15 X21,17,22,16
Gauss code 1, -4, 2, -7, 3, -1, 4, -2, -5, 8, -6, -3, 7, 10, -8, 11, -9, 5, -10, 6, -11, 9
Dowker-Thistlethwaite code 6 8 12 2 -18 -20 4 -10 -22 -14 -16
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
A Morse Link Presentation K11n152 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ [2,3] }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11n152's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^2+6 t-7+6 t^{-1} -2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^4-2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 23, 2 }
Jones polynomial [math]\displaystyle{ -q^8+3 q^7-4 q^6+5 q^5-5 q^4+4 q^3-3 q^2+q+1- q^{-1} + q^{-2} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-2} +z^6 a^{-4} -7 z^4 a^{-2} +5 z^4 a^{-4} -z^4 a^{-6} +z^4-13 z^2 a^{-2} +9 z^2 a^{-4} -2 z^2 a^{-6} +4 z^2-7 a^{-2} +5 a^{-4} - a^{-6} +4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-1} +z^9 a^{-3} +2 z^8 a^{-2} +2 z^8 a^{-4} +z^8 a^{-6} +z^8-7 z^7 a^{-1} -7 z^7 a^{-3} +3 z^7 a^{-5} +3 z^7 a^{-7} -17 z^6 a^{-2} -13 z^6 a^{-4} +3 z^6 a^{-8} -7 z^6+13 z^5 a^{-1} +11 z^5 a^{-3} -11 z^5 a^{-5} -8 z^5 a^{-7} +z^5 a^{-9} +40 z^4 a^{-2} +28 z^4 a^{-4} -5 z^4 a^{-6} -8 z^4 a^{-8} +15 z^4-7 z^3 a^{-1} +2 z^3 a^{-3} +15 z^3 a^{-5} +4 z^3 a^{-7} -2 z^3 a^{-9} -31 z^2 a^{-2} -19 z^2 a^{-4} +2 z^2 a^{-6} +3 z^2 a^{-8} -13 z^2-4 z a^{-3} -6 z a^{-5} -2 z a^{-7} +7 a^{-2} +5 a^{-4} + a^{-6} +4 }[/math]
The A2 invariant [math]\displaystyle{ q^6+q^4+2 q^2+ q^{-2} -2 q^{-4} -2 q^{-6} -2 q^{-10} +2 q^{-12} +2 q^{-16} + q^{-18} - q^{-20} + q^{-22} - q^{-24} }[/math]
The G2 invariant Data:K11n152/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_6, K11n20, K11n151,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n151,}

Vassiliev invariants

V2 and V3: (-2, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -8 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{212}{3} }[/math] [math]\displaystyle{ \frac{100}{3} }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ \frac{400}{3} }[/math] [math]\displaystyle{ \frac{64}{3} }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -\frac{1696}{3} }[/math] [math]\displaystyle{ -\frac{800}{3} }[/math] [math]\displaystyle{ -\frac{8791}{15} }[/math] [math]\displaystyle{ \frac{1604}{15} }[/math] [math]\displaystyle{ -\frac{29044}{45} }[/math] [math]\displaystyle{ \frac{871}{9} }[/math] [math]\displaystyle{ -\frac{2071}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11n152. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          2 2
13         21 -1
11        32  1
9      132   0
7      23    -1
5    133     1
3   112      -2
1   13       2
-1 11         0
-3            0
-51           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n151.gif

K11n151

K11n153.gif

K11n153