K11n153

From Knot Atlas
Jump to navigationJump to search

K11n152.gif

K11n152

K11n154.gif

K11n154

K11n153.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n153 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X8394 X12,6,13,5 X20,8,21,7 X16,9,17,10 X18,11,19,12 X13,1,14,22 X4,16,5,15 X10,17,11,18 X2,19,3,20 X21,15,22,14
Gauss code 1, -10, 2, -8, 3, -1, 4, -2, 5, -9, 6, -3, -7, 11, 8, -5, 9, -6, 10, -4, -11, 7
Dowker-Thistlethwaite code 6 8 12 20 16 18 -22 4 10 2 -14
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11n153 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11n153's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^4-4 t^3+7 t^2-10 t+13-10 t^{-1} +7 t^{-2} -4 t^{-3} + t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ z^8+4 z^6+3 z^4-2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 57, 0 }
Jones polynomial [math]\displaystyle{ 2 q^4-4 q^3+6 q^2-9 q+10-9 q^{-1} +8 q^{-2} -5 q^{-3} +3 q^{-4} - q^{-5} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^8-a^2 z^6-z^6 a^{-2} +6 z^6-4 a^2 z^4-5 z^4 a^{-2} +12 z^4-4 a^2 z^2-8 z^2 a^{-2} +z^2 a^{-4} +9 z^2-4 a^{-2} +2 a^{-4} +3 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 a z^9+2 z^9 a^{-1} +4 a^2 z^8+3 z^8 a^{-2} +7 z^8+4 a^3 z^7-3 a z^7-6 z^7 a^{-1} +z^7 a^{-3} +3 a^4 z^6-11 a^2 z^6-12 z^6 a^{-2} -26 z^6+a^5 z^5-9 a^3 z^5+11 z^5 a^{-1} +z^5 a^{-3} -7 a^4 z^4+12 a^2 z^4+25 z^4 a^{-2} +3 z^4 a^{-4} +41 z^4-2 a^5 z^3+4 a^3 z^3+5 a z^3-7 z^3 a^{-1} -6 z^3 a^{-3} +2 a^4 z^2-5 a^2 z^2-21 z^2 a^{-2} -7 z^2 a^{-4} -21 z^2-a^3 z-a z+3 z a^{-1} +3 z a^{-3} +4 a^{-2} +2 a^{-4} +3 }[/math]
The A2 invariant [math]\displaystyle{ -q^{14}+q^{12}-q^{10}+2 q^8+q^6+3 q^2-2+2 q^{-2} -3 q^{-4} - q^{-6} - q^{-10} +2 q^{-12} + q^{-16} }[/math]
The G2 invariant Data:K11n153/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -8 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{20}{3} }[/math] [math]\displaystyle{ -\frac{20}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{608}{3} }[/math] [math]\displaystyle{ \frac{224}{3} }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ -\frac{160}{3} }[/math] [math]\displaystyle{ \frac{160}{3} }[/math] [math]\displaystyle{ \frac{4409}{15} }[/math] [math]\displaystyle{ -\frac{4196}{15} }[/math] [math]\displaystyle{ \frac{26276}{45} }[/math] [math]\displaystyle{ -\frac{953}{9} }[/math] [math]\displaystyle{ \frac{2009}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11n153. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         22
7        2 -2
5       42 2
3      52  -3
1     54   1
-1    56    1
-3   34     -1
-5  25      3
-7 13       -2
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n152.gif

K11n152

K11n154.gif

K11n154