K11n154

From Knot Atlas
Jump to navigationJump to search

K11n153.gif

K11n153

K11n155.gif

K11n155

K11n154.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n154 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X8394 X12,6,13,5 X20,8,21,7 X9,17,10,16 X11,19,12,18 X22,13,1,14 X4,16,5,15 X17,11,18,10 X2,19,3,20 X14,21,15,22
Gauss code 1, -10, 2, -8, 3, -1, 4, -2, -5, 9, -6, -3, 7, -11, 8, 5, -9, 6, 10, -4, 11, -7
Dowker-Thistlethwaite code 6 8 12 20 -16 -18 22 4 -10 2 14
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11n154 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11n154's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^3-7 t^2+19 t-25+19 t^{-1} -7 t^{-2} + t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ z^6-z^4+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 79, 2 }
Jones polynomial [math]\displaystyle{ -q^8+4 q^7-8 q^6+11 q^5-13 q^4+14 q^3-12 q^2+9 q-5+2 q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-4} -3 z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -6 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} +2 z^2-3 a^{-2} +3 a^{-4} - a^{-6} +2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^9 a^{-3} +2 z^9 a^{-5} +3 z^8 a^{-2} +9 z^8 a^{-4} +6 z^8 a^{-6} +z^7 a^{-1} +6 z^7 a^{-5} +7 z^7 a^{-7} -6 z^6 a^{-2} -19 z^6 a^{-4} -9 z^6 a^{-6} +4 z^6 a^{-8} +3 z^5 a^{-1} +z^5 a^{-3} -16 z^5 a^{-5} -13 z^5 a^{-7} +z^5 a^{-9} +14 z^4 a^{-2} +20 z^4 a^{-4} +3 z^4 a^{-6} -6 z^4 a^{-8} +3 z^4-5 z^3 a^{-1} -2 z^3 a^{-3} +9 z^3 a^{-5} +5 z^3 a^{-7} -z^3 a^{-9} -13 z^2 a^{-2} -11 z^2 a^{-4} -2 z^2 a^{-6} +z^2 a^{-8} -5 z^2+z a^{-1} +z a^{-3} -z a^{-5} -z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2 }[/math]
The A2 invariant [math]\displaystyle{ 2 q^4-1+3 q^{-2} -3 q^{-4} + q^{-6} - q^{-10} +3 q^{-12} -2 q^{-14} +3 q^{-16} - q^{-18} -2 q^{-20} +2 q^{-22} - q^{-24} }[/math]
The G2 invariant Data:K11n154/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_44,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (0, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \frac{176}{3} }[/math] [math]\displaystyle{ -\frac{64}{3} }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ -\frac{536}{3} }[/math] [math]\displaystyle{ \frac{664}{3} }[/math] [math]\displaystyle{ \frac{16}{3} }[/math] [math]\displaystyle{ 32 }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11n154. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        3 3
13       51 -4
11      63  3
9     75   -2
7    76    1
5   57     2
3  47      -3
1 26       4
-1 3        -3
-32         2
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n153.gif

K11n153

K11n155.gif

K11n155