9 20: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
| ⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
| ⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
| Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
| Line 47: | Line 40: | ||
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 125: | Line 117: | ||
q t q t q t q t q t q t q t q</nowiki></pre></td></tr> |
q t q t q t q t q t q t q t q</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
|||
Revision as of 19:08, 28 August 2005
|
|
|
|
Visit 9 20's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 20's page at Knotilus! Visit 9 20's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X1425 X3,10,4,11 X5,14,6,15 X7,16,8,17 X11,1,12,18 X15,6,16,7 X17,13,18,12 X13,8,14,9 X9,2,10,3 |
| Gauss code | -1, 9, -2, 1, -3, 6, -4, 8, -9, 2, -5, 7, -8, 3, -6, 4, -7, 5 |
| Dowker-Thistlethwaite code | 4 10 14 16 2 18 8 6 12 |
| Conway Notation | [31212] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^3+5 t^2-9 t+11-9 t^{-1} +5 t^{-2} - t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^6-z^4+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 41, -4 } |
| Jones polynomial | [math]\displaystyle{ 1-2 q^{-1} +4 q^{-2} -5 q^{-3} +7 q^{-4} -7 q^{-5} +6 q^{-6} -5 q^{-7} +3 q^{-8} - q^{-9} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^2 a^8-a^8+2 z^4 a^6+5 z^2 a^6+2 a^6-z^6 a^4-4 z^4 a^4-5 z^2 a^4-2 a^4+z^4 a^2+3 z^2 a^2+2 a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^3 a^{11}+3 z^4 a^{10}-z^2 a^{10}+5 z^5 a^9-5 z^3 a^9+2 z a^9+5 z^6 a^8-6 z^4 a^8+3 z^2 a^8-a^8+3 z^7 a^7-7 z^3 a^7+2 z a^7+z^8 a^6+5 z^6 a^6-16 z^4 a^6+10 z^2 a^6-2 a^6+5 z^7 a^5-12 z^5 a^5+5 z^3 a^5+z^8 a^4+z^6 a^4-11 z^4 a^4+11 z^2 a^4-2 a^4+2 z^7 a^3-7 z^5 a^3+6 z^3 a^3+z^6 a^2-4 z^4 a^2+5 z^2 a^2-2 a^2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{28}+q^{24}-q^{22}+q^{20}-q^{18}+q^{14}-q^{12}+2 q^{10}-q^8+q^6+q^4+1 }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{148}-2 q^{146}+3 q^{144}-4 q^{142}+2 q^{140}-q^{138}-2 q^{136}+9 q^{134}-12 q^{132}+15 q^{130}-13 q^{128}+5 q^{126}+2 q^{124}-13 q^{122}+23 q^{120}-27 q^{118}+23 q^{116}-13 q^{114}-q^{112}+15 q^{110}-23 q^{108}+25 q^{106}-21 q^{104}+5 q^{102}+7 q^{100}-17 q^{98}+16 q^{96}-5 q^{94}-9 q^{92}+23 q^{90}-24 q^{88}+14 q^{86}+3 q^{84}-26 q^{82}+44 q^{80}-44 q^{78}+30 q^{76}-4 q^{74}-21 q^{72}+43 q^{70}-45 q^{68}+33 q^{66}-17 q^{64}-6 q^{62}+22 q^{60}-28 q^{58}+22 q^{56}-6 q^{54}-9 q^{52}+19 q^{50}-19 q^{48}+7 q^{46}+8 q^{44}-23 q^{42}+31 q^{40}-28 q^{38}+12 q^{36}+10 q^{34}-26 q^{32}+36 q^{30}-30 q^{28}+17 q^{26}-q^{24}-13 q^{22}+21 q^{20}-19 q^{18}+14 q^{16}-3 q^{14}-2 q^{12}+5 q^{10}-5 q^8+4 q^6-q^4+q^2 }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{19}+2 q^{17}-2 q^{15}+q^{13}-q^{11}+2 q^7-q^5+2 q^3-q+ q^{-1} }[/math] |
| 2 | [math]\displaystyle{ q^{52}-2 q^{50}+5 q^{46}-6 q^{44}-q^{42}+8 q^{40}-8 q^{38}-q^{36}+9 q^{34}-4 q^{32}-4 q^{30}+4 q^{28}+2 q^{26}-5 q^{24}-3 q^{22}+6 q^{20}-q^{18}-7 q^{16}+8 q^{14}+3 q^{12}-8 q^{10}+5 q^8+5 q^6-6 q^4+q^2+4-2 q^{-2} - q^{-4} + q^{-6} }[/math] |
| 3 | [math]\displaystyle{ -q^{99}+2 q^{97}-3 q^{93}+5 q^{89}+2 q^{87}-10 q^{85}+13 q^{81}-2 q^{79}-18 q^{77}+2 q^{75}+25 q^{73}-2 q^{71}-28 q^{69}-2 q^{67}+30 q^{65}+7 q^{63}-26 q^{61}-13 q^{59}+16 q^{57}+19 q^{55}-6 q^{53}-20 q^{51}-5 q^{49}+21 q^{47}+13 q^{45}-16 q^{43}-22 q^{41}+13 q^{39}+23 q^{37}-9 q^{35}-27 q^{33}+2 q^{31}+28 q^{29}+4 q^{27}-27 q^{25}-11 q^{23}+26 q^{21}+17 q^{19}-19 q^{17}-20 q^{15}+13 q^{13}+23 q^{11}-3 q^9-20 q^7-2 q^5+14 q^3+7 q-8 q^{-1} -7 q^{-3} +3 q^{-5} +5 q^{-7} -2 q^{-11} - q^{-13} + q^{-15} }[/math] |
| 4 | [math]\displaystyle{ q^{160}-2 q^{158}+3 q^{154}-2 q^{152}+q^{150}-6 q^{148}+3 q^{146}+9 q^{144}-8 q^{142}+2 q^{140}-10 q^{138}+11 q^{136}+18 q^{134}-25 q^{132}-10 q^{130}-9 q^{128}+40 q^{126}+37 q^{124}-53 q^{122}-46 q^{120}-15 q^{118}+79 q^{116}+79 q^{114}-60 q^{112}-93 q^{110}-51 q^{108}+86 q^{106}+122 q^{104}-15 q^{102}-92 q^{100}-97 q^{98}+30 q^{96}+111 q^{94}+48 q^{92}-28 q^{90}-96 q^{88}-45 q^{86}+39 q^{84}+78 q^{82}+50 q^{80}-51 q^{78}-87 q^{76}-28 q^{74}+73 q^{72}+85 q^{70}-5 q^{68}-93 q^{66}-68 q^{64}+60 q^{62}+92 q^{60}+24 q^{58}-90 q^{56}-92 q^{54}+44 q^{52}+92 q^{50}+58 q^{48}-70 q^{46}-114 q^{44}+3 q^{42}+76 q^{40}+98 q^{38}-20 q^{36}-112 q^{34}-52 q^{32}+26 q^{30}+114 q^{28}+46 q^{26}-63 q^{24}-76 q^{22}-40 q^{20}+70 q^{18}+73 q^{16}+6 q^{14}-44 q^{12}-68 q^{10}+7 q^8+44 q^6+35 q^4+4 q^2-40-19 q^{-2} +3 q^{-4} +19 q^{-6} +18 q^{-8} -8 q^{-10} -9 q^{-12} -7 q^{-14} + q^{-16} +7 q^{-18} + q^{-20} -2 q^{-24} - q^{-26} + q^{-28} }[/math] |
| 5 | [math]\displaystyle{ -q^{235}+2 q^{233}-3 q^{229}+2 q^{227}+q^{225}+q^{221}-2 q^{219}-4 q^{217}+2 q^{215}+6 q^{213}-q^{211}-8 q^{209}-5 q^{207}+10 q^{205}+15 q^{203}+8 q^{201}-18 q^{199}-46 q^{197}-15 q^{195}+50 q^{193}+81 q^{191}+32 q^{189}-77 q^{187}-147 q^{185}-73 q^{183}+114 q^{181}+236 q^{179}+133 q^{177}-137 q^{175}-326 q^{173}-232 q^{171}+119 q^{169}+420 q^{167}+350 q^{165}-68 q^{163}-460 q^{161}-464 q^{159}-46 q^{157}+443 q^{155}+556 q^{153}+176 q^{151}-353 q^{149}-573 q^{147}-306 q^{145}+198 q^{143}+514 q^{141}+400 q^{139}-23 q^{137}-388 q^{135}-422 q^{133}-140 q^{131}+213 q^{129}+390 q^{127}+262 q^{125}-44 q^{123}-304 q^{121}-338 q^{119}-100 q^{117}+215 q^{115}+354 q^{113}+205 q^{111}-132 q^{109}-361 q^{107}-261 q^{105}+87 q^{103}+349 q^{101}+288 q^{99}-49 q^{97}-356 q^{95}-311 q^{93}+44 q^{91}+362 q^{89}+335 q^{87}-17 q^{85}-376 q^{83}-381 q^{81}-16 q^{79}+378 q^{77}+426 q^{75}+83 q^{73}-346 q^{71}-472 q^{69}-180 q^{67}+280 q^{65}+491 q^{63}+277 q^{61}-165 q^{59}-467 q^{57}-379 q^{55}+21 q^{53}+390 q^{51}+433 q^{49}+129 q^{47}-259 q^{45}-429 q^{43}-260 q^{41}+102 q^{39}+361 q^{37}+336 q^{35}+55 q^{33}-241 q^{31}-332 q^{29}-176 q^{27}+97 q^{25}+275 q^{23}+234 q^{21}+28 q^{19}-167 q^{17}-220 q^{15}-117 q^{13}+61 q^{11}+167 q^9+140 q^7+22 q^5-87 q^3-119 q-65 q^{-1} +23 q^{-3} +75 q^{-5} +67 q^{-7} +15 q^{-9} -32 q^{-11} -45 q^{-13} -29 q^{-15} +4 q^{-17} +25 q^{-19} +22 q^{-21} +5 q^{-23} -6 q^{-25} -11 q^{-27} -9 q^{-29} + q^{-31} +5 q^{-33} +3 q^{-35} + q^{-37} -2 q^{-41} - q^{-43} + q^{-45} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{28}+q^{24}-q^{22}+q^{20}-q^{18}+q^{14}-q^{12}+2 q^{10}-q^8+q^6+q^4+1 }[/math] |
| 1,1 | [math]\displaystyle{ q^{76}-4 q^{74}+8 q^{72}-12 q^{70}+22 q^{68}-36 q^{66}+46 q^{64}-56 q^{62}+72 q^{60}-84 q^{58}+84 q^{56}-82 q^{54}+77 q^{52}-62 q^{50}+32 q^{48}+4 q^{46}-43 q^{44}+90 q^{42}-132 q^{40}+168 q^{38}-192 q^{36}+198 q^{34}-190 q^{32}+158 q^{30}-126 q^{28}+82 q^{26}-30 q^{24}-18 q^{22}+57 q^{20}-82 q^{18}+106 q^{16}-110 q^{14}+104 q^{12}-84 q^{10}+70 q^8-48 q^6+29 q^4-16 q^2+8-2 q^{-2} + q^{-4} }[/math] |
| 2,0 | [math]\displaystyle{ q^{70}-q^{66}+q^{62}-3 q^{58}+q^{56}+2 q^{54}-3 q^{52}-q^{50}+4 q^{48}+3 q^{46}-4 q^{44}-q^{42}+3 q^{40}-2 q^{38}-4 q^{36}+2 q^{34}+q^{32}-4 q^{30}+q^{28}+2 q^{26}-2 q^{24}-2 q^{22}+4 q^{20}+3 q^{18}-2 q^{16}+q^{14}+5 q^{12}-2 q^8+q^6+2 q^4-1+ q^{-4} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{62}-2 q^{60}-q^{58}+5 q^{56}-3 q^{54}-3 q^{52}+8 q^{50}-3 q^{48}-6 q^{46}+6 q^{44}-2 q^{42}-6 q^{40}+4 q^{38}+q^{36}-2 q^{34}-q^{32}+3 q^{30}+3 q^{28}-6 q^{26}+3 q^{24}+5 q^{22}-7 q^{20}+5 q^{16}-5 q^{14}+2 q^{12}+5 q^{10}-2 q^8+2 q^6+2 q^4-q^2+1 }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{37}-q^{33}+q^{31}-q^{29}+2 q^{27}-q^{25}+q^{23}-q^{15}+q^{13}-q^{11}+2 q^9+2 q^5+q }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{80}-2 q^{76}-q^{74}+2 q^{72}+2 q^{70}-2 q^{68}+5 q^{64}-6 q^{60}+2 q^{56}-6 q^{54}-3 q^{52}+3 q^{50}+q^{48}-4 q^{46}+3 q^{44}+5 q^{42}-4 q^{40}-q^{38}+7 q^{36}-7 q^{32}+4 q^{30}+3 q^{28}-4 q^{26}-3 q^{24}+3 q^{22}+q^{20}-2 q^{18}+2 q^{16}+4 q^{14}+q^{12}+q^{10}+3 q^8+q^6+q^2 }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{46}-q^{42}-q^{40}+q^{38}-q^{36}+2 q^{34}+q^{30}+q^{28}-q^{22}-2 q^{18}+q^{16}-q^{14}+2 q^{12}+q^{10}+q^8+2 q^6+q^2 }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{62}+2 q^{60}-3 q^{58}+5 q^{56}-7 q^{54}+7 q^{52}-8 q^{50}+7 q^{48}-6 q^{46}+4 q^{44}-4 q^{40}+8 q^{38}-11 q^{36}+14 q^{34}-15 q^{32}+15 q^{30}-13 q^{28}+10 q^{26}-7 q^{24}+3 q^{22}+q^{20}-4 q^{18}+7 q^{16}-7 q^{14}+8 q^{12}-7 q^{10}+6 q^8-4 q^6+4 q^4-q^2+1 }[/math] |
| 1,0 | [math]\displaystyle{ q^{100}-2 q^{96}-2 q^{94}+q^{92}+5 q^{90}+2 q^{88}-5 q^{86}-5 q^{84}+2 q^{82}+8 q^{80}+2 q^{78}-7 q^{76}-6 q^{74}+3 q^{72}+7 q^{70}-q^{68}-7 q^{66}-2 q^{64}+6 q^{62}+4 q^{60}-5 q^{58}-5 q^{56}+3 q^{54}+5 q^{52}-2 q^{50}-5 q^{48}+q^{46}+5 q^{44}-6 q^{40}-q^{38}+7 q^{36}+5 q^{34}-5 q^{32}-8 q^{30}+q^{28}+9 q^{26}+3 q^{24}-6 q^{22}-6 q^{20}+4 q^{18}+7 q^{16}+q^{14}-4 q^{12}-2 q^{10}+3 q^8+3 q^6-q^4-q^2+ q^{-2} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{86}-2 q^{84}+q^{82}-2 q^{80}+5 q^{78}-5 q^{76}+4 q^{74}-5 q^{72}+8 q^{70}-5 q^{68}+4 q^{66}-6 q^{64}+3 q^{62}-2 q^{60}-2 q^{58}-6 q^{54}+7 q^{52}-8 q^{50}+11 q^{48}-11 q^{46}+13 q^{44}-9 q^{42}+12 q^{40}-9 q^{38}+8 q^{36}-5 q^{34}+3 q^{32}-3 q^{30}-2 q^{28}+2 q^{26}-5 q^{24}+4 q^{22}-6 q^{20}+8 q^{18}-4 q^{16}+7 q^{14}-3 q^{12}+6 q^{10}-2 q^8+3 q^6-q^4+q^2 }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{148}-2 q^{146}+3 q^{144}-4 q^{142}+2 q^{140}-q^{138}-2 q^{136}+9 q^{134}-12 q^{132}+15 q^{130}-13 q^{128}+5 q^{126}+2 q^{124}-13 q^{122}+23 q^{120}-27 q^{118}+23 q^{116}-13 q^{114}-q^{112}+15 q^{110}-23 q^{108}+25 q^{106}-21 q^{104}+5 q^{102}+7 q^{100}-17 q^{98}+16 q^{96}-5 q^{94}-9 q^{92}+23 q^{90}-24 q^{88}+14 q^{86}+3 q^{84}-26 q^{82}+44 q^{80}-44 q^{78}+30 q^{76}-4 q^{74}-21 q^{72}+43 q^{70}-45 q^{68}+33 q^{66}-17 q^{64}-6 q^{62}+22 q^{60}-28 q^{58}+22 q^{56}-6 q^{54}-9 q^{52}+19 q^{50}-19 q^{48}+7 q^{46}+8 q^{44}-23 q^{42}+31 q^{40}-28 q^{38}+12 q^{36}+10 q^{34}-26 q^{32}+36 q^{30}-30 q^{28}+17 q^{26}-q^{24}-13 q^{22}+21 q^{20}-19 q^{18}+14 q^{16}-3 q^{14}-2 q^{12}+5 q^{10}-5 q^8+4 q^6-q^4+q^2 }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 20"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^3+5 t^2-9 t+11-9 t^{-1} +5 t^{-2} - t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^6-z^4+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 41, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ 1-2 q^{-1} +4 q^{-2} -5 q^{-3} +7 q^{-4} -7 q^{-5} +6 q^{-6} -5 q^{-7} +3 q^{-8} - q^{-9} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^2 a^8-a^8+2 z^4 a^6+5 z^2 a^6+2 a^6-z^6 a^4-4 z^4 a^4-5 z^2 a^4-2 a^4+z^4 a^2+3 z^2 a^2+2 a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^3 a^{11}+3 z^4 a^{10}-z^2 a^{10}+5 z^5 a^9-5 z^3 a^9+2 z a^9+5 z^6 a^8-6 z^4 a^8+3 z^2 a^8-a^8+3 z^7 a^7-7 z^3 a^7+2 z a^7+z^8 a^6+5 z^6 a^6-16 z^4 a^6+10 z^2 a^6-2 a^6+5 z^7 a^5-12 z^5 a^5+5 z^3 a^5+z^8 a^4+z^6 a^4-11 z^4 a^4+11 z^2 a^4-2 a^4+2 z^7 a^3-7 z^5 a^3+6 z^3 a^3+z^6 a^2-4 z^4 a^2+5 z^2 a^2-2 a^2 }[/math] |
Vassiliev invariants
| V2 and V3: | (2, -4) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 9 20. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 20]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 20]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 15], X[7, 16, 8, 17],X[11, 1, 12, 18], X[15, 6, 16, 7], X[17, 13, 18, 12],X[13, 8, 14, 9], X[9, 2, 10, 3]] |
In[4]:= | GaussCode[Knot[9, 20]] |
Out[4]= | GaussCode[-1, 9, -2, 1, -3, 6, -4, 8, -9, 2, -5, 7, -8, 3, -6, 4, -7, 5] |
In[5]:= | BR[Knot[9, 20]] |
Out[5]= | BR[4, {-1, -1, -1, 2, -1, -3, 2, -3, -3}] |
In[6]:= | alex = Alexander[Knot[9, 20]][t] |
Out[6]= | -3 5 9 2 3 |
In[7]:= | Conway[Knot[9, 20]][z] |
Out[7]= | 2 4 6 1 + 2 z - z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 20], Knot[10, 149], Knot[11, NonAlternating, 26]} |
In[9]:= | {KnotDet[Knot[9, 20]], KnotSignature[Knot[9, 20]]} |
Out[9]= | {41, -4} |
In[10]:= | J=Jones[Knot[9, 20]][q] |
Out[10]= | -9 3 5 6 7 7 5 4 2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 20], Knot[11, NonAlternating, 90]} |
In[12]:= | A2Invariant[Knot[9, 20]][q] |
Out[12]= | -28 -24 -22 -20 -18 -14 -12 2 -8 -6 |
In[13]:= | Kauffman[Knot[9, 20]][a, z] |
Out[13]= | 2 4 6 8 7 9 2 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[9, 20]], Vassiliev[3][Knot[9, 20]]} |
Out[14]= | {0, -4} |
In[15]:= | Kh[Knot[9, 20]][q, t] |
Out[15]= | 2 3 1 2 1 3 2 3 |



