9 21

From Knot Atlas
Jump to navigationJump to search

9 20.gif

9_20

9 22.gif

9_22

9 21.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 21's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 21 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X13,1,14,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8
Gauss code -1, 4, -3, 1, -6, 7, -8, 9, -2, 3, -4, 2, -5, 6, -9, 8, -7, 5
Dowker-Thistlethwaite code 4 10 14 16 12 2 18 8 6
Conway Notation [31122]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

9 21 ML.gif 9 21 AP.gif
[{11, 6}, {7, 5}, {6, 10}, {1, 7}, {8, 11}, {10, 4}, {5, 2}, {3, 1}, {4, 9}, {2, 8}, {9, 3}]

[edit Notes on presentations of 9 21]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,7\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-1][-10]
Hyperbolic Volume 10.1833
A-Polynomial See Data:9 21/A-polynomial

[edit Notes for 9 21's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 2

[edit Notes for 9 21's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^2+11 t-17+11 t^{-1} -2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 43, 2 }
Jones polynomial [math]\displaystyle{ -q^8+2 q^7-4 q^6+6 q^5-7 q^4+8 q^3-6 q^2+5 q-3+ q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^4 a^{-2} -z^4 a^{-4} +2 z^2 a^{-6} +z^2+ a^{-2} + a^{-6} - a^{-8} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-4} +z^8 a^{-6} +3 z^7 a^{-3} +5 z^7 a^{-5} +2 z^7 a^{-7} +4 z^6 a^{-2} +4 z^6 a^{-4} +2 z^6 a^{-6} +2 z^6 a^{-8} +3 z^5 a^{-1} -3 z^5 a^{-3} -10 z^5 a^{-5} -3 z^5 a^{-7} +z^5 a^{-9} -6 z^4 a^{-2} -9 z^4 a^{-4} -7 z^4 a^{-6} -5 z^4 a^{-8} +z^4-4 z^3 a^{-1} +2 z^3 a^{-3} +9 z^3 a^{-5} -3 z^3 a^{-9} +3 z^2 a^{-2} +6 z^2 a^{-4} +5 z^2 a^{-6} +3 z^2 a^{-8} -z^2-z a^{-3} -3 z a^{-5} +2 z a^{-9} - a^{-2} - a^{-6} - a^{-8} }[/math]
The A2 invariant [math]\displaystyle{ q^4-q^2-1+2 q^{-2} - q^{-4} +2 q^{-6} + q^{-8} + q^{-12} - q^{-14} +2 q^{-16} - q^{-20} + q^{-22} - q^{-24} - q^{-26} }[/math]
The G2 invariant [math]\displaystyle{ q^{18}-2 q^{16}+4 q^{14}-6 q^{12}+4 q^{10}-q^8-4 q^6+13 q^4-17 q^2+22-19 q^{-2} +5 q^{-4} +10 q^{-6} -27 q^{-8} +38 q^{-10} -39 q^{-12} +28 q^{-14} -7 q^{-16} -17 q^{-18} +36 q^{-20} -40 q^{-22} +30 q^{-24} -9 q^{-26} -13 q^{-28} +24 q^{-30} -21 q^{-32} +8 q^{-34} +18 q^{-36} -33 q^{-38} +40 q^{-40} -24 q^{-42} -4 q^{-44} +36 q^{-46} -58 q^{-48} +63 q^{-50} -46 q^{-52} +17 q^{-54} +18 q^{-56} -45 q^{-58} +57 q^{-60} -50 q^{-62} +27 q^{-64} -25 q^{-68} +32 q^{-70} -23 q^{-72} +7 q^{-74} +16 q^{-76} -28 q^{-78} +26 q^{-80} -10 q^{-82} -14 q^{-84} +36 q^{-86} -44 q^{-88} +36 q^{-90} -17 q^{-92} -8 q^{-94} +27 q^{-96} -37 q^{-98} +35 q^{-100} -23 q^{-102} +6 q^{-104} +6 q^{-106} -16 q^{-108} +16 q^{-110} -14 q^{-112} +9 q^{-114} -3 q^{-116} -2 q^{-118} +3 q^{-120} -4 q^{-122} +3 q^{-124} - q^{-126} + q^{-128} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n129,}

Vassiliev invariants

V2 and V3: (3, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 238 }[/math] [math]\displaystyle{ 50 }[/math] [math]\displaystyle{ 576 }[/math] [math]\displaystyle{ 1248 }[/math] [math]\displaystyle{ 192 }[/math] [math]\displaystyle{ 272 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 1152 }[/math] [math]\displaystyle{ 2856 }[/math] [math]\displaystyle{ 600 }[/math] [math]\displaystyle{ \frac{65311}{10} }[/math] [math]\displaystyle{ -\frac{3182}{5} }[/math] [math]\displaystyle{ \frac{18154}{5} }[/math] [math]\displaystyle{ \frac{235}{2} }[/math] [math]\displaystyle{ \frac{5631}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 9 21. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        1 1
13       31 -2
11      31  2
9     43   -1
7    43    1
5   24     2
3  34      -1
1 13       2
-1 2        -2
-31         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials