10 114: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11a93]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 73: | ||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{12}-4 q^{11}+4 q^{10}+8 q^9-26 q^8+20 q^7+31 q^6-81 q^5+42 q^4+82 q^3-150 q^2+44 q+144-188 q^{-1} +18 q^{-2} +179 q^{-3} -173 q^{-4} -20 q^{-5} +170 q^{-6} -117 q^{-7} -47 q^{-8} +121 q^{-9} -50 q^{-10} -47 q^{-11} +58 q^{-12} -7 q^{-13} -24 q^{-14} +14 q^{-15} +2 q^{-16} -4 q^{-17} + q^{-18} </math>|J3=<math>q^{24}-4 q^{23}+4 q^{22}+4 q^{21}-6 q^{20}-11 q^{19}+15 q^{18}+25 q^{17}-44 q^{16}-37 q^{15}+86 q^{14}+76 q^{13}-162 q^{12}-151 q^{11}+262 q^{10}+281 q^9-365 q^8-469 q^7+437 q^6+701 q^5-453 q^4-946 q^3+412 q^2+1147 q-296-1309 q^{-1} +167 q^{-2} +1368 q^{-3} +15 q^{-4} -1388 q^{-5} -162 q^{-6} +1309 q^{-7} +337 q^{-8} -1208 q^{-9} -463 q^{-10} +1027 q^{-11} +594 q^{-12} -837 q^{-13} -659 q^{-14} +600 q^{-15} +679 q^{-16} -363 q^{-17} -637 q^{-18} +158 q^{-19} +524 q^{-20} +9 q^{-21} -388 q^{-22} -93 q^{-23} +237 q^{-24} +120 q^{-25} -122 q^{-26} -95 q^{-27} +43 q^{-28} +62 q^{-29} -12 q^{-30} -27 q^{-31} +9 q^{-33} +2 q^{-34} -4 q^{-35} + q^{-36} </math>|J4=<math>q^{40}-4 q^{39}+4 q^{38}+4 q^{37}-10 q^{36}+9 q^{35}-16 q^{34}+19 q^{33}+11 q^{32}-52 q^{31}+54 q^{30}-25 q^{29}+58 q^{28}-30 q^{27}-239 q^{26}+184 q^{25}+155 q^{24}+303 q^{23}-242 q^{22}-1004 q^{21}+139 q^{20}+803 q^{19}+1465 q^{18}-229 q^{17}-2840 q^{16}-1111 q^{15}+1405 q^{14}+4180 q^{13}+1296 q^{12}-4984 q^{11}-4227 q^{10}+395 q^9+7366 q^8+4897 q^7-5521 q^6-7825 q^5-2743 q^4+8870 q^3+8925 q^2-3804 q-9709-6410 q^{-1} +8019 q^{-2} +11304 q^{-3} -1105 q^{-4} -9327 q^{-5} -8912 q^{-6} +5828 q^{-7} +11623 q^{-8} +1385 q^{-9} -7529 q^{-10} -10036 q^{-11} +3156 q^{-12} +10543 q^{-13} +3532 q^{-14} -4917 q^{-15} -10112 q^{-16} +133 q^{-17} +8295 q^{-18} +5263 q^{-19} -1562 q^{-20} -8871 q^{-21} -2794 q^{-22} +4794 q^{-23} +5699 q^{-24} +1853 q^{-25} -5907 q^{-26} -4273 q^{-27} +864 q^{-28} +4074 q^{-29} +3720 q^{-30} -2150 q^{-31} -3397 q^{-32} -1602 q^{-33} +1349 q^{-34} +3137 q^{-35} +346 q^{-36} -1278 q^{-37} -1696 q^{-38} -416 q^{-39} +1365 q^{-40} +757 q^{-41} +83 q^{-42} -686 q^{-43} -586 q^{-44} +230 q^{-45} +275 q^{-46} +248 q^{-47} -84 q^{-48} -209 q^{-49} -12 q^{-50} +16 q^{-51} +74 q^{-52} +12 q^{-53} -33 q^{-54} -3 q^{-55} -5 q^{-56} +9 q^{-57} +2 q^{-58} -4 q^{-59} + q^{-60} </math>|J5=<math>q^{60}-4 q^{59}+4 q^{58}+4 q^{57}-10 q^{56}+5 q^{55}+4 q^{54}-12 q^{53}+5 q^{52}+13 q^{51}-12 q^{50}+14 q^{49}+25 q^{48}-47 q^{47}-76 q^{46}-35 q^{45}+88 q^{44}+235 q^{43}+221 q^{42}-139 q^{41}-681 q^{40}-717 q^{39}+142 q^{38}+1397 q^{37}+1861 q^{36}+430 q^{35}-2480 q^{34}-4230 q^{33}-2019 q^{32}+3533 q^{31}+7938 q^{30}+5819 q^{29}-3588 q^{28}-13168 q^{27}-12644 q^{26}+1323 q^{25}+18846 q^{24}+22958 q^{23}+5034 q^{22}-23319 q^{21}-36246 q^{20}-16501 q^{19}+24395 q^{18}+50614 q^{17}+32984 q^{16}-20091 q^{15}-63424 q^{14}-52999 q^{13}+9792 q^{12}+72019 q^{11}+73678 q^{10}+5716 q^9-74673 q^8-91983 q^7-24148 q^6+71094 q^5+105530 q^4+42813 q^3-62759 q^2-113105 q-58967+51245 q^{-1} +115139 q^{-2} +71610 q^{-3} -39254 q^{-4} -112765 q^{-5} -79863 q^{-6} +27453 q^{-7} +107579 q^{-8} +85150 q^{-9} -17118 q^{-10} -100836 q^{-11} -87747 q^{-12} +7185 q^{-13} +93094 q^{-14} +89436 q^{-15} +2241 q^{-16} -84237 q^{-17} -89921 q^{-18} -12620 q^{-19} +73812 q^{-20} +89682 q^{-21} +23379 q^{-22} -61069 q^{-23} -87225 q^{-24} -34862 q^{-25} +45796 q^{-26} +82137 q^{-27} +45115 q^{-28} -28292 q^{-29} -72840 q^{-30} -53030 q^{-31} +9722 q^{-32} +59629 q^{-33} +56447 q^{-34} +7696 q^{-35} -42787 q^{-36} -54326 q^{-37} -21831 q^{-38} +24422 q^{-39} +46683 q^{-40} +30397 q^{-41} -7141 q^{-42} -34561 q^{-43} -32603 q^{-44} -6610 q^{-45} +20774 q^{-46} +28908 q^{-47} +14745 q^{-48} -7856 q^{-49} -21262 q^{-50} -17244 q^{-51} -1599 q^{-52} +12367 q^{-53} +15061 q^{-54} +6743 q^{-55} -4692 q^{-56} -10497 q^{-57} -7781 q^{-58} -384 q^{-59} +5600 q^{-60} +6372 q^{-61} +2581 q^{-62} -1991 q^{-63} -3928 q^{-64} -2730 q^{-65} -76 q^{-66} +1889 q^{-67} +1959 q^{-68} +674 q^{-69} -600 q^{-70} -1010 q^{-71} -639 q^{-72} +25 q^{-73} +438 q^{-74} +366 q^{-75} +78 q^{-76} -124 q^{-77} -144 q^{-78} -80 q^{-79} +22 q^{-80} +67 q^{-81} +23 q^{-82} -9 q^{-83} -9 q^{-84} -8 q^{-85} -5 q^{-86} +9 q^{-87} +2 q^{-88} -4 q^{-89} + q^{-90} </math>|J6=Not Available|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 83: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 114]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 114]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[18, 13, 19, 14], X[20, 11, 1, 12], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[18, 13, 19, 14], X[20, 11, 1, 12], |
|||
X[12, 19, 13, 20], X[2, 16, 3, 15], X[4, 17, 5, 18], X[10, 6, 11, 5], |
X[12, 19, 13, 20], X[2, 16, 3, 15], X[4, 17, 5, 18], X[10, 6, 11, 5], |
||
X[14, 7, 15, 8], X[16, 10, 17, 9]]</nowiki></pre></td></tr> |
X[14, 7, 15, 8], X[16, 10, 17, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 114]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 114]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, |
|||
-3, 5, -4]</nowiki></pre></td></tr> |
-3, 5, -4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 114]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 114]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 10, 14, 16, 20, 18, 2, 4, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 114]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -2, 1, 3, -2, 3, -2, 3, -2, 3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -2, 1, 3, -2, 3, -2, 3, -2, 3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 114]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 114]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 114]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_114_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 114]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 114]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 10 21 2 3 |
|||
27 - -- + -- - -- - 21 t + 10 t - 2 t |
27 - -- + -- - -- - 21 t + 10 t - 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 114]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 114]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z - 2 z - 2 z</nowiki></pre></td></tr> |
1 + z - 2 z - 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 114], Knot[11, Alternating, 93]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{93, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 114]], KnotSignature[Knot[10, 114]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{93, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 114]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 4 7 11 15 15 2 3 4 |
|||
15 + q - -- + -- - -- + -- - -- - 12 q + 8 q - 4 q + q |
15 + q - -- + -- - -- + -- - -- - 12 q + 8 q - 4 q + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 114]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 114]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 114]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 2 3 4 2 2 2 4 6 8 10 |
|||
-2 + q - --- - --- + -- + -- + -- + 3 q - 3 q + q + q - 2 q + |
-2 + q - --- - --- + -- + -- + -- + 3 q - 3 q + q + q - 2 q + |
||
16 10 8 4 2 |
16 10 8 4 2 |
||
Line 92: | Line 147: | ||
12 |
12 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 114]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 114]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
2 4 2 z 4 2 4 z 2 4 4 4 6 2 6 |
|||
2 a - a - z + -- + a z - 2 z + -- - 2 a z + a z - z - a z |
|||
2 2 |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 114]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 |
|||
2 4 z 3 2 z 2 2 4 2 2 z |
2 4 z 3 2 z 2 2 4 2 2 z |
||
-2 a - a - - - 3 a z - 2 a z + ---- - 5 a z - 3 a z - ---- + |
-2 a - a - - - 3 a z - 2 a z + ---- - 5 a z - 3 a z - ---- + |
||
Line 119: | Line 182: | ||
3 7 5 7 8 2 8 4 8 9 3 9 |
3 7 5 7 8 2 8 4 8 9 3 9 |
||
2 a z + 4 a z + 8 z + 14 a z + 6 a z + 3 a z + 3 a z</nowiki></pre></td></tr> |
2 a z + 4 a z + 8 z + 14 a z + 6 a z + 3 a z + 3 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 114]], Vassiliev[3][Knot[10, 114]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 114]], Vassiliev[3][Knot[10, 114]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8 1 3 1 4 3 7 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 114]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8 1 3 1 4 3 7 4 |
|||
- + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
- + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
q 13 6 11 5 9 5 9 4 7 4 7 3 5 3 |
||
Line 134: | Line 199: | ||
5 3 7 3 9 4 |
5 3 7 3 9 4 |
||
q t + 3 q t + q t</nowiki></pre></td></tr> |
q t + 3 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 114], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 4 2 14 24 7 58 47 50 121 47 |
|||
144 + q - --- + --- + --- - --- - --- + --- - --- - --- + --- - -- - |
|||
17 16 15 14 13 12 11 10 9 8 |
|||
q q q q q q q q q q |
|||
117 170 20 173 179 18 188 2 3 |
|||
--- + --- - -- - --- + --- + -- - --- + 44 q - 150 q + 82 q + |
|||
7 6 5 4 3 2 q |
|||
q q q q q q |
|||
4 5 6 7 8 9 10 11 12 |
|||
42 q - 81 q + 31 q + 20 q - 26 q + 8 q + 4 q - 4 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 16:59, 29 August 2005
|
|
Visit 10 114's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 114's page at Knotilus! Visit 10 114's page at the original Knot Atlas! |
10 114 Further Notes and Views
Knot presentations
Planar diagram presentation | X6271 X8394 X18,13,19,14 X20,11,1,12 X12,19,13,20 X2,16,3,15 X4,17,5,18 X10,6,11,5 X14,7,15,8 X16,10,17,9 |
Gauss code | 1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, -3, 5, -4 |
Dowker-Thistlethwaite code | 6 8 10 14 16 20 18 2 4 12 |
Conway Notation | [8*30] |
Length is 11, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 114"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 93, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a93, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 114. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | Not Available |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.