10 96: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 12, width is 5. |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
| Line 42: | Line 74: | ||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{18}-3 q^{17}+q^{16}+11 q^{15}-19 q^{14}-6 q^{13}+51 q^{12}-45 q^{11}-44 q^{10}+119 q^9-54 q^8-112 q^7+179 q^6-33 q^5-175 q^4+198 q^3+3 q^2-198 q+167+34 q^{-1} -165 q^{-2} +102 q^{-3} +41 q^{-4} -94 q^{-5} +40 q^{-6} +23 q^{-7} -31 q^{-8} +8 q^{-9} +5 q^{-10} -4 q^{-11} + q^{-12} </math>|J3=<math>q^{36}-3 q^{35}+q^{34}+5 q^{33}+3 q^{32}-19 q^{31}-9 q^{30}+40 q^{29}+36 q^{28}-72 q^{27}-92 q^{26}+93 q^{25}+199 q^{24}-98 q^{23}-332 q^{22}+36 q^{21}+501 q^{20}+83 q^{19}-654 q^{18}-273 q^{17}+772 q^{16}+511 q^{15}-833 q^{14}-771 q^{13}+831 q^{12}+1023 q^{11}-773 q^{10}-1241 q^9+662 q^8+1424 q^7-532 q^6-1532 q^5+365 q^4+1583 q^3-191 q^2-1554 q+20+1437 q^{-1} +143 q^{-2} -1259 q^{-3} -249 q^{-4} +1004 q^{-5} +324 q^{-6} -754 q^{-7} -314 q^{-8} +497 q^{-9} +279 q^{-10} -309 q^{-11} -194 q^{-12} +158 q^{-13} +129 q^{-14} -79 q^{-15} -70 q^{-16} +37 q^{-17} +29 q^{-18} -13 q^{-19} -11 q^{-20} +4 q^{-21} +5 q^{-22} -4 q^{-23} + q^{-24} </math>|J4=<math>q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}+3 q^{55}-22 q^{54}+3 q^{53}+42 q^{52}+8 q^{51}+10 q^{50}-132 q^{49}-61 q^{48}+153 q^{47}+168 q^{46}+183 q^{45}-413 q^{44}-486 q^{43}+78 q^{42}+568 q^{41}+1058 q^{40}-438 q^{39}-1427 q^{38}-943 q^{37}+527 q^{36}+2848 q^{35}+825 q^{34}-1960 q^{33}-3151 q^{32}-1252 q^{31}+4417 q^{30}+3623 q^{29}-588 q^{28}-5259 q^{27}-4968 q^{26}+4120 q^{25}+6571 q^{24}+2914 q^{23}-5652 q^{22}-9164 q^{21}+1697 q^{20}+8110 q^{19}+7178 q^{18}-4118 q^{17}-12277 q^{16}-1705 q^{15}+7965 q^{14}+10792 q^{13}-1582 q^{12}-13811 q^{11}-4977 q^{10}+6672 q^9+13171 q^8+1213 q^7-13785 q^6-7654 q^5+4493 q^4+14001 q^3+3978 q^2-11969 q-9232+1487 q^{-1} +12686 q^{-2} +6116 q^{-3} -8311 q^{-4} -8871 q^{-5} -1544 q^{-6} +9152 q^{-7} +6528 q^{-8} -3997 q^{-9} -6376 q^{-10} -3110 q^{-11} +4797 q^{-12} +4894 q^{-13} -928 q^{-14} -3140 q^{-15} -2690 q^{-16} +1643 q^{-17} +2500 q^{-18} +161 q^{-19} -928 q^{-20} -1399 q^{-21} +326 q^{-22} +852 q^{-23} +157 q^{-24} -116 q^{-25} -467 q^{-26} +45 q^{-27} +198 q^{-28} +23 q^{-29} +16 q^{-30} -105 q^{-31} +11 q^{-32} +36 q^{-33} -7 q^{-34} +7 q^{-35} -15 q^{-36} +4 q^{-37} +5 q^{-38} -4 q^{-39} + q^{-40} </math>|J5=Not Available|J6=Not Available|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 49: | Line 84: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 96]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 96]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 18, 6, 19], X[3, 9, 4, 8], X[9, 3, 10, 2], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 18, 6, 19], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[11, 17, 12, 16], X[7, 12, 8, 13], X[15, 6, 16, 7], |
X[11, 17, 12, 16], X[7, 12, 8, 13], X[15, 6, 16, 7], |
||
X[17, 11, 18, 10], X[13, 1, 14, 20], X[19, 15, 20, 14]]</nowiki></pre></td></tr> |
X[17, 11, 18, 10], X[13, 1, 14, 20], X[19, 15, 20, 14]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 96]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 96]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 7, -6, 3, -4, 8, -5, 6, -9, 10, -7, 5, -8, |
|||
2, -10, 9]</nowiki></pre></td></tr> |
2, -10, 9]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 96]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 96]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 18, 12, 2, 16, 20, 6, 10, 14]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 96]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, 2, 1, -3, 2, 1, -3, 4, -3, 2, -3, 4}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, 2, 1, -3, 2, 1, -3, 4, -3, 2, -3, 4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 96]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 12}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 96]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 96]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_96_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 96]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 96]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 22 2 3 |
|||
33 - t + -- - -- - 22 t + 7 t - t |
33 - t + -- - -- - 22 t + 7 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 96]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 96]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - 3 z + z - z</nowiki></pre></td></tr> |
1 - 3 z + z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 96]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{93, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 96]], KnotSignature[Knot[10, 96]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{93, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 96]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 4 9 12 2 3 4 5 6 |
|||
15 + q - -- + -- - -- - 16 q + 14 q - 11 q + 7 q - 3 q + q |
15 + q - -- + -- - -- - 16 q + 14 q - 11 q + 7 q - 3 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 96]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 96]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 96]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 2 3 2 3 3 2 6 8 10 12 |
|||
-3 + q - --- + -- + -- - -- + -- + q - q + 3 q - 3 q + q + |
-3 + q - --- + -- + -- - -- + -- + q - q + 3 q - 3 q + q + |
||
10 8 6 4 2 |
10 8 6 4 2 |
||
| Line 92: | Line 148: | ||
14 16 18 20 |
14 16 18 20 |
||
q - 2 q + q + q</nowiki></pre></td></tr> |
q - 2 q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 96]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 96]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 |
|||
-6 2 3 2 2 3 z 5 z 2 2 4 3 z |
|||
-3 + a - -- + -- + 2 a - 6 z - ---- + ---- + a z - 3 z + ---- + |
|||
4 2 4 2 2 |
|||
a a a a a |
|||
2 4 6 |
|||
a z - z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 96]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
-6 2 3 2 2 z 2 z z 2 3 z 6 z |
-6 2 3 2 2 z 2 z z 2 3 z 6 z |
||
-3 - a - -- - -- - 2 a - --- - --- - - - a z + 12 z + ---- + ---- + |
-3 - a - -- - -- - 2 a - --- - --- - - - a z + 12 z + ---- + ---- + |
||
| Line 122: | Line 189: | ||
a 4 2 3 a |
a 4 2 3 a |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 96]], Vassiliev[3][Knot[10, 96]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 96]], Vassiliev[3][Knot[10, 96]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9 1 3 1 6 3 6 6 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 96]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9 1 3 1 6 3 6 6 |
|||
- + 7 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 8 q t + |
- + 7 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 8 q t + |
||
q 9 4 7 3 5 3 5 2 3 2 3 q t |
q 9 4 7 3 5 3 5 2 3 2 3 q t |
||
| Line 135: | Line 204: | ||
9 5 11 5 13 6 |
9 5 11 5 13 6 |
||
q t + 2 q t + q t</nowiki></pre></td></tr> |
q t + 2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 96], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 4 5 8 31 23 40 94 41 102 165 34 |
|||
167 + q - --- + --- + -- - -- + -- + -- - -- + -- + --- - --- + -- - |
|||
11 10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q q |
|||
2 3 4 5 6 7 8 |
|||
198 q + 3 q + 198 q - 175 q - 33 q + 179 q - 112 q - 54 q + |
|||
9 10 11 12 13 14 15 16 |
|||
119 q - 44 q - 45 q + 51 q - 6 q - 19 q + 11 q + q - |
|||
17 18 |
|||
3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
||
Revision as of 17:01, 29 August 2005
|
|
|
|
Visit 10 96's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 96's page at Knotilus! Visit 10 96's page at the original Knot Atlas! |
Knot presentations
| Planar diagram presentation | X1425 X5,18,6,19 X3948 X9,3,10,2 X11,17,12,16 X7,12,8,13 X15,6,16,7 X17,11,18,10 X13,1,14,20 X19,15,20,14 |
| Gauss code | -1, 4, -3, 1, -2, 7, -6, 3, -4, 8, -5, 6, -9, 10, -7, 5, -8, 2, -10, 9 |
| Dowker-Thistlethwaite code | 4 8 18 12 2 16 20 6 10 14 |
| Conway Notation | [.2.21.2] |
|
Length is 12, width is 5. Braid index is 5. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+7 t^2-22 t+33-22 t^{-1} +7 t^{-2} - t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+z^4-3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 93, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+7 q^4-11 q^3+14 q^2-16 q+15-12 q^{-1} +9 q^{-2} -4 q^{-3} + q^{-4} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+a^2 z^4+3 z^4 a^{-2} -3 z^4+a^2 z^2+5 z^2 a^{-2} -3 z^2 a^{-4} -6 z^2+2 a^2+3 a^{-2} -2 a^{-4} + a^{-6} -3} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^9 a^{-1} +2 z^9 a^{-3} +11 z^8 a^{-2} +4 z^8 a^{-4} +7 z^8+11 a z^7+14 z^7 a^{-1} +6 z^7 a^{-3} +3 z^7 a^{-5} +9 a^2 z^6-17 z^6 a^{-2} -7 z^6 a^{-4} +z^6 a^{-6} +4 a^3 z^5-15 a z^5-34 z^5 a^{-1} -23 z^5 a^{-3} -8 z^5 a^{-5} +a^4 z^4-10 a^2 z^4-4 z^4 a^{-2} -z^4 a^{-4} -3 z^4 a^{-6} -17 z^4-a^3 z^3+7 a z^3+17 z^3 a^{-1} +16 z^3 a^{-3} +7 z^3 a^{-5} +5 a^2 z^2+10 z^2 a^{-2} +6 z^2 a^{-4} +3 z^2 a^{-6} +12 z^2-a z-z a^{-1} -2 z a^{-3} -2 z a^{-5} -2 a^2-3 a^{-2} -2 a^{-4} - a^{-6} -3} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{10}+3 q^8+2 q^6-3 q^4+3 q^2-3+ q^{-2} - q^{-6} +3 q^{-8} -3 q^{-10} + q^{-12} + q^{-14} -2 q^{-16} + q^{-18} + q^{-20} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-3 q^{64}+6 q^{62}-10 q^{60}+11 q^{58}-10 q^{56}+4 q^{54}+15 q^{52}-37 q^{50}+63 q^{48}-80 q^{46}+68 q^{44}-36 q^{42}-30 q^{40}+119 q^{38}-191 q^{36}+229 q^{34}-189 q^{32}+78 q^{30}+83 q^{28}-238 q^{26}+334 q^{24}-324 q^{22}+195 q^{20}+4 q^{18}-197 q^{16}+307 q^{14}-272 q^{12}+120 q^{10}+86 q^8-245 q^6+269 q^4-161 q^2-63+294 q^{-2} -425 q^{-4} +394 q^{-6} -202 q^{-8} -84 q^{-10} +357 q^{-12} -513 q^{-14} +493 q^{-16} -322 q^{-18} +52 q^{-20} +219 q^{-22} -388 q^{-24} +414 q^{-26} -276 q^{-28} +57 q^{-30} +160 q^{-32} -281 q^{-34} +251 q^{-36} -98 q^{-38} -109 q^{-40} +278 q^{-42} -326 q^{-44} +228 q^{-46} -21 q^{-48} -206 q^{-50} +357 q^{-52} -373 q^{-54} +255 q^{-56} -70 q^{-58} -122 q^{-60} +239 q^{-62} -260 q^{-64} +201 q^{-66} -91 q^{-68} -11 q^{-70} +76 q^{-72} -97 q^{-74} +81 q^{-76} -47 q^{-78} +18 q^{-80} +4 q^{-82} -13 q^{-84} +13 q^{-86} -10 q^{-88} +6 q^{-90} -2 q^{-92} + q^{-94} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-3 q^{24}+2 q^{22}+9 q^{20}-18 q^{18}+32 q^{14}-31 q^{12}-13 q^{10}+49 q^8-22 q^6-29 q^4+36 q^2+3-28 q^{-2} +3 q^{-4} +26 q^{-6} -10 q^{-8} -29 q^{-10} +34 q^{-12} +13 q^{-14} -47 q^{-16} +21 q^{-18} +30 q^{-20} -38 q^{-22} +26 q^{-26} -14 q^{-28} -7 q^{-30} +9 q^{-32} - q^{-34} -2 q^{-36} + q^{-38} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{51}-3 q^{49}+2 q^{47}+6 q^{45}-6 q^{43}-15 q^{41}+9 q^{39}+42 q^{37}-17 q^{35}-83 q^{33}+17 q^{31}+138 q^{29}+14 q^{27}-216 q^{25}-66 q^{23}+273 q^{21}+153 q^{19}-292 q^{17}-247 q^{15}+260 q^{13}+325 q^{11}-180 q^9-361 q^7+72 q^5+341 q^3+46 q-288 q^{-1} -142 q^{-3} +203 q^{-5} +225 q^{-7} -116 q^{-9} -275 q^{-11} +22 q^{-13} +313 q^{-15} +72 q^{-17} -329 q^{-19} -160 q^{-21} +310 q^{-23} +250 q^{-25} -262 q^{-27} -321 q^{-29} +177 q^{-31} +356 q^{-33} -72 q^{-35} -343 q^{-37} -34 q^{-39} +288 q^{-41} +107 q^{-43} -195 q^{-45} -138 q^{-47} +102 q^{-49} +128 q^{-51} -35 q^{-53} -88 q^{-55} -5 q^{-57} +48 q^{-59} +15 q^{-61} -20 q^{-63} -10 q^{-65} +6 q^{-67} +4 q^{-69} - q^{-71} -2 q^{-73} + q^{-75} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}-3 q^{82}+2 q^{80}+6 q^{78}-9 q^{76}-3 q^{74}-6 q^{72}+25 q^{70}+32 q^{68}-58 q^{66}-49 q^{64}-19 q^{62}+143 q^{60}+177 q^{58}-185 q^{56}-317 q^{54}-183 q^{52}+471 q^{50}+752 q^{48}-180 q^{46}-992 q^{44}-988 q^{42}+660 q^{40}+1977 q^{38}+686 q^{36}-1526 q^{34}-2615 q^{32}-221 q^{30}+2933 q^{28}+2513 q^{26}-723 q^{24}-3792 q^{22}-2158 q^{20}+2197 q^{18}+3763 q^{16}+1268 q^{14}-3046 q^{12}-3458 q^{10}+76 q^8+3107 q^6+2746 q^4-912 q^2-3050-1735 q^{-2} +1271 q^{-4} +2849 q^{-6} +1033 q^{-8} -1732 q^{-10} -2562 q^{-12} -383 q^{-14} +2294 q^{-16} +2268 q^{-18} -527 q^{-20} -2906 q^{-22} -1613 q^{-24} +1659 q^{-26} +3193 q^{-28} +657 q^{-30} -2957 q^{-32} -2812 q^{-34} +590 q^{-36} +3703 q^{-38} +2169 q^{-40} -2095 q^{-42} -3634 q^{-44} -1211 q^{-46} +2985 q^{-48} +3378 q^{-50} -124 q^{-52} -3072 q^{-54} -2775 q^{-56} +941 q^{-58} +3049 q^{-60} +1677 q^{-62} -1121 q^{-64} -2690 q^{-66} -911 q^{-68} +1297 q^{-70} +1830 q^{-72} +567 q^{-74} -1223 q^{-76} -1182 q^{-78} -161 q^{-80} +780 q^{-82} +805 q^{-84} -70 q^{-86} -470 q^{-88} -395 q^{-90} +30 q^{-92} +311 q^{-94} +138 q^{-96} -22 q^{-98} -133 q^{-100} -69 q^{-102} +41 q^{-104} +34 q^{-106} +23 q^{-108} -14 q^{-110} -16 q^{-112} +3 q^{-114} + q^{-116} +4 q^{-118} - q^{-120} -2 q^{-122} + q^{-124} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{125}-3 q^{123}+2 q^{121}+6 q^{119}-9 q^{117}-6 q^{115}+6 q^{113}+10 q^{111}+15 q^{109}-3 q^{107}-48 q^{105}-56 q^{103}+42 q^{101}+145 q^{99}+119 q^{97}-95 q^{95}-346 q^{93}-336 q^{91}+136 q^{89}+823 q^{87}+867 q^{85}-140 q^{83}-1585 q^{81}-1997 q^{79}-294 q^{77}+2663 q^{75}+4140 q^{73}+1652 q^{71}-3769 q^{69}-7394 q^{67}-4631 q^{65}+3967 q^{63}+11549 q^{61}+9927 q^{59}-2279 q^{57}-15649 q^{55}-17196 q^{53}-2539 q^{51}+17911 q^{49}+25619 q^{47}+10696 q^{45}-16770 q^{43}-32921 q^{41}-21228 q^{39}+11069 q^{37}+36814 q^{35}+32043 q^{33}-1366 q^{31}-35574 q^{29}-40327 q^{27}-10445 q^{25}+28877 q^{23}+43868 q^{21}+21724 q^{19}-18214 q^{17}-41801 q^{15}-29894 q^{13}+5958 q^{11}+34897 q^9+33650 q^7+5317 q^5-25118 q^3-33074 q-13948 q^{-1} +14857 q^{-3} +29481 q^{-5} +19294 q^{-7} -5762 q^{-9} -24644 q^{-11} -22168 q^{-13} -1138 q^{-15} +20180 q^{-17} +23554 q^{-19} +6143 q^{-21} -16835 q^{-23} -24883 q^{-25} -10068 q^{-27} +14747 q^{-29} +26768 q^{-31} +13965 q^{-33} -13016 q^{-35} -29348 q^{-37} -18765 q^{-39} +10575 q^{-41} +32004 q^{-43} +24653 q^{-45} -6324 q^{-47} -33394 q^{-49} -31233 q^{-51} -408 q^{-53} +32267 q^{-55} +37240 q^{-57} +9286 q^{-59} -27460 q^{-61} -40930 q^{-63} -19220 q^{-65} +18847 q^{-67} +40696 q^{-69} +28154 q^{-71} -7396 q^{-73} -35691 q^{-75} -33819 q^{-77} -4838 q^{-79} +26289 q^{-81} +34643 q^{-83} +15255 q^{-85} -14398 q^{-87} -30268 q^{-89} -21479 q^{-91} +2578 q^{-93} +21920 q^{-95} +22620 q^{-97} +6502 q^{-99} -12116 q^{-101} -19138 q^{-103} -11260 q^{-105} +3337 q^{-107} +13010 q^{-109} +11772 q^{-111} +2499 q^{-113} -6637 q^{-115} -9240 q^{-117} -4935 q^{-119} +1714 q^{-121} +5626 q^{-123} +4792 q^{-125} +934 q^{-127} -2486 q^{-129} -3294 q^{-131} -1704 q^{-133} +514 q^{-135} +1707 q^{-137} +1410 q^{-139} +287 q^{-141} -623 q^{-143} -800 q^{-145} -393 q^{-147} +96 q^{-149} +334 q^{-151} +265 q^{-153} +43 q^{-155} -105 q^{-157} -110 q^{-159} -43 q^{-161} +11 q^{-163} +40 q^{-165} +26 q^{-167} -6 q^{-169} -10 q^{-171} -3 q^{-173} -2 q^{-175} + q^{-177} +4 q^{-179} - q^{-181} -2 q^{-183} + q^{-185} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-2 q^{10}+3 q^8+2 q^6-3 q^4+3 q^2-3+ q^{-2} - q^{-6} +3 q^{-8} -3 q^{-10} + q^{-12} + q^{-14} -2 q^{-16} + q^{-18} + q^{-20} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-2 q^{30}+q^{28}+6 q^{26}-4 q^{24}-9 q^{22}+6 q^{20}+17 q^{18}-9 q^{16}-25 q^{14}+11 q^{12}+26 q^{10}-12 q^8-20 q^6+18 q^4+14 q^2-11-10 q^{-2} +7 q^{-4} -3 q^{-6} -7 q^{-8} +11 q^{-10} -3 q^{-12} -12 q^{-14} +12 q^{-16} +19 q^{-18} -15 q^{-20} -15 q^{-22} +16 q^{-24} +15 q^{-26} -16 q^{-28} -17 q^{-30} +14 q^{-32} +13 q^{-34} -8 q^{-36} -11 q^{-38} +3 q^{-40} +8 q^{-42} -4 q^{-46} - q^{-48} + q^{-50} + q^{-52} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-3 q^{26}+10 q^{22}-11 q^{20}-6 q^{18}+26 q^{16}-18 q^{14}-12 q^{12}+38 q^{10}-18 q^8-18 q^6+31 q^4-12 q^2-17+10 q^{-2} +5 q^{-4} -4 q^{-6} -12 q^{-8} +18 q^{-10} +12 q^{-12} -30 q^{-14} +15 q^{-16} +20 q^{-18} -35 q^{-20} +12 q^{-22} +17 q^{-24} -25 q^{-26} +9 q^{-28} +8 q^{-30} -10 q^{-32} +4 q^{-34} +2 q^{-36} -2 q^{-38} + q^{-40} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-2 q^{13}+4 q^{11}+3 q^7-3 q^5+2 q^3-3 q- q^{-1} +2 q^{-7} - q^{-9} +4 q^{-11} -3 q^{-13} + q^{-15} -2 q^{-17} + q^{-19} -2 q^{-21} + q^{-23} + q^{-25} + q^{-27} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-3 q^{26}+6 q^{24}-12 q^{22}+21 q^{20}-28 q^{18}+36 q^{16}-40 q^{14}+42 q^{12}-36 q^{10}+26 q^8-10 q^6-9 q^4+30 q^2-51+66 q^{-2} -77 q^{-4} +80 q^{-6} -74 q^{-8} +62 q^{-10} -44 q^{-12} +24 q^{-14} -3 q^{-16} -16 q^{-18} +29 q^{-20} -38 q^{-22} +41 q^{-24} -39 q^{-26} +33 q^{-28} -26 q^{-30} +18 q^{-32} -10 q^{-34} +6 q^{-36} -2 q^{-38} + q^{-40} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-3 q^{42}-3 q^{40}+3 q^{38}+11 q^{36}+4 q^{34}-16 q^{32}-17 q^{30}+9 q^{28}+31 q^{26}+8 q^{24}-33 q^{22}-27 q^{20}+23 q^{18}+42 q^{16}-q^{14}-42 q^{12}-16 q^{10}+33 q^8+27 q^6-23 q^4-32 q^2+10+30 q^{-2} -2 q^{-4} -30 q^{-6} -5 q^{-8} +27 q^{-10} +11 q^{-12} -24 q^{-14} -15 q^{-16} +25 q^{-18} +26 q^{-20} -19 q^{-22} -37 q^{-24} +7 q^{-26} +44 q^{-28} +12 q^{-30} -39 q^{-32} -32 q^{-34} +23 q^{-36} +40 q^{-38} -3 q^{-40} -34 q^{-42} -14 q^{-44} +20 q^{-46} +19 q^{-48} -6 q^{-50} -14 q^{-52} -2 q^{-54} +7 q^{-56} +4 q^{-58} -2 q^{-60} -2 q^{-62} + q^{-66} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-3 q^{64}+6 q^{62}-10 q^{60}+11 q^{58}-10 q^{56}+4 q^{54}+15 q^{52}-37 q^{50}+63 q^{48}-80 q^{46}+68 q^{44}-36 q^{42}-30 q^{40}+119 q^{38}-191 q^{36}+229 q^{34}-189 q^{32}+78 q^{30}+83 q^{28}-238 q^{26}+334 q^{24}-324 q^{22}+195 q^{20}+4 q^{18}-197 q^{16}+307 q^{14}-272 q^{12}+120 q^{10}+86 q^8-245 q^6+269 q^4-161 q^2-63+294 q^{-2} -425 q^{-4} +394 q^{-6} -202 q^{-8} -84 q^{-10} +357 q^{-12} -513 q^{-14} +493 q^{-16} -322 q^{-18} +52 q^{-20} +219 q^{-22} -388 q^{-24} +414 q^{-26} -276 q^{-28} +57 q^{-30} +160 q^{-32} -281 q^{-34} +251 q^{-36} -98 q^{-38} -109 q^{-40} +278 q^{-42} -326 q^{-44} +228 q^{-46} -21 q^{-48} -206 q^{-50} +357 q^{-52} -373 q^{-54} +255 q^{-56} -70 q^{-58} -122 q^{-60} +239 q^{-62} -260 q^{-64} +201 q^{-66} -91 q^{-68} -11 q^{-70} +76 q^{-72} -97 q^{-74} +81 q^{-76} -47 q^{-78} +18 q^{-80} +4 q^{-82} -13 q^{-84} +13 q^{-86} -10 q^{-88} +6 q^{-90} -2 q^{-92} + q^{-94} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 96"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+7 t^2-22 t+33-22 t^{-1} +7 t^{-2} - t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+z^4-3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 93, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+7 q^4-11 q^3+14 q^2-16 q+15-12 q^{-1} +9 q^{-2} -4 q^{-3} + q^{-4} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+a^2 z^4+3 z^4 a^{-2} -3 z^4+a^2 z^2+5 z^2 a^{-2} -3 z^2 a^{-4} -6 z^2+2 a^2+3 a^{-2} -2 a^{-4} + a^{-6} -3} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^9 a^{-1} +2 z^9 a^{-3} +11 z^8 a^{-2} +4 z^8 a^{-4} +7 z^8+11 a z^7+14 z^7 a^{-1} +6 z^7 a^{-3} +3 z^7 a^{-5} +9 a^2 z^6-17 z^6 a^{-2} -7 z^6 a^{-4} +z^6 a^{-6} +4 a^3 z^5-15 a z^5-34 z^5 a^{-1} -23 z^5 a^{-3} -8 z^5 a^{-5} +a^4 z^4-10 a^2 z^4-4 z^4 a^{-2} -z^4 a^{-4} -3 z^4 a^{-6} -17 z^4-a^3 z^3+7 a z^3+17 z^3 a^{-1} +16 z^3 a^{-3} +7 z^3 a^{-5} +5 a^2 z^2+10 z^2 a^{-2} +6 z^2 a^{-4} +3 z^2 a^{-6} +12 z^2-a z-z a^{-1} -2 z a^{-3} -2 z a^{-5} -2 a^2-3 a^{-2} -2 a^{-4} - a^{-6} -3} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {...}
Vassiliev invariants
| V2 and V3: | (-3, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 96. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-3 q^{17}+q^{16}+11 q^{15}-19 q^{14}-6 q^{13}+51 q^{12}-45 q^{11}-44 q^{10}+119 q^9-54 q^8-112 q^7+179 q^6-33 q^5-175 q^4+198 q^3+3 q^2-198 q+167+34 q^{-1} -165 q^{-2} +102 q^{-3} +41 q^{-4} -94 q^{-5} +40 q^{-6} +23 q^{-7} -31 q^{-8} +8 q^{-9} +5 q^{-10} -4 q^{-11} + q^{-12} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-3 q^{35}+q^{34}+5 q^{33}+3 q^{32}-19 q^{31}-9 q^{30}+40 q^{29}+36 q^{28}-72 q^{27}-92 q^{26}+93 q^{25}+199 q^{24}-98 q^{23}-332 q^{22}+36 q^{21}+501 q^{20}+83 q^{19}-654 q^{18}-273 q^{17}+772 q^{16}+511 q^{15}-833 q^{14}-771 q^{13}+831 q^{12}+1023 q^{11}-773 q^{10}-1241 q^9+662 q^8+1424 q^7-532 q^6-1532 q^5+365 q^4+1583 q^3-191 q^2-1554 q+20+1437 q^{-1} +143 q^{-2} -1259 q^{-3} -249 q^{-4} +1004 q^{-5} +324 q^{-6} -754 q^{-7} -314 q^{-8} +497 q^{-9} +279 q^{-10} -309 q^{-11} -194 q^{-12} +158 q^{-13} +129 q^{-14} -79 q^{-15} -70 q^{-16} +37 q^{-17} +29 q^{-18} -13 q^{-19} -11 q^{-20} +4 q^{-21} +5 q^{-22} -4 q^{-23} + q^{-24} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-3 q^{59}+q^{58}+5 q^{57}-3 q^{56}+3 q^{55}-22 q^{54}+3 q^{53}+42 q^{52}+8 q^{51}+10 q^{50}-132 q^{49}-61 q^{48}+153 q^{47}+168 q^{46}+183 q^{45}-413 q^{44}-486 q^{43}+78 q^{42}+568 q^{41}+1058 q^{40}-438 q^{39}-1427 q^{38}-943 q^{37}+527 q^{36}+2848 q^{35}+825 q^{34}-1960 q^{33}-3151 q^{32}-1252 q^{31}+4417 q^{30}+3623 q^{29}-588 q^{28}-5259 q^{27}-4968 q^{26}+4120 q^{25}+6571 q^{24}+2914 q^{23}-5652 q^{22}-9164 q^{21}+1697 q^{20}+8110 q^{19}+7178 q^{18}-4118 q^{17}-12277 q^{16}-1705 q^{15}+7965 q^{14}+10792 q^{13}-1582 q^{12}-13811 q^{11}-4977 q^{10}+6672 q^9+13171 q^8+1213 q^7-13785 q^6-7654 q^5+4493 q^4+14001 q^3+3978 q^2-11969 q-9232+1487 q^{-1} +12686 q^{-2} +6116 q^{-3} -8311 q^{-4} -8871 q^{-5} -1544 q^{-6} +9152 q^{-7} +6528 q^{-8} -3997 q^{-9} -6376 q^{-10} -3110 q^{-11} +4797 q^{-12} +4894 q^{-13} -928 q^{-14} -3140 q^{-15} -2690 q^{-16} +1643 q^{-17} +2500 q^{-18} +161 q^{-19} -928 q^{-20} -1399 q^{-21} +326 q^{-22} +852 q^{-23} +157 q^{-24} -116 q^{-25} -467 q^{-26} +45 q^{-27} +198 q^{-28} +23 q^{-29} +16 q^{-30} -105 q^{-31} +11 q^{-32} +36 q^{-33} -7 q^{-34} +7 q^{-35} -15 q^{-36} +4 q^{-37} +5 q^{-38} -4 q^{-39} + q^{-40} } |
| 5 | Not Available |
| 6 | Not Available |
| 7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.



