10 118: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11a257]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 72: | ||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{15}-4 q^{14}+3 q^{13}+11 q^{12}-27 q^{11}+8 q^{10}+52 q^9-76 q^8-8 q^7+130 q^6-122 q^5-55 q^4+208 q^3-134 q^2-107 q+241-107 q^{-1} -134 q^{-2} +208 q^{-3} -55 q^{-4} -122 q^{-5} +130 q^{-6} -8 q^{-7} -76 q^{-8} +52 q^{-9} +8 q^{-10} -27 q^{-11} +11 q^{-12} +3 q^{-13} -4 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+4 q^{29}-3 q^{28}-6 q^{27}+4 q^{26}+18 q^{25}-9 q^{24}-48 q^{23}+21 q^{22}+99 q^{21}-14 q^{20}-194 q^{19}-26 q^{18}+323 q^{17}+129 q^{16}-466 q^{15}-307 q^{14}+582 q^{13}+562 q^{12}-650 q^{11}-851 q^{10}+639 q^9+1148 q^8-565 q^7-1402 q^6+430 q^5+1603 q^4-274 q^3-1714 q^2+84 q+1769+84 q^{-1} -1714 q^{-2} -274 q^{-3} +1603 q^{-4} +430 q^{-5} -1402 q^{-6} -565 q^{-7} +1148 q^{-8} +639 q^{-9} -851 q^{-10} -650 q^{-11} +562 q^{-12} +582 q^{-13} -307 q^{-14} -466 q^{-15} +129 q^{-16} +323 q^{-17} -26 q^{-18} -194 q^{-19} -14 q^{-20} +99 q^{-21} +21 q^{-22} -48 q^{-23} -9 q^{-24} +18 q^{-25} +4 q^{-26} -6 q^{-27} -3 q^{-28} +4 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-4 q^{49}+3 q^{48}+6 q^{47}-9 q^{46}+5 q^{45}-17 q^{44}+22 q^{43}+31 q^{42}-60 q^{41}-4 q^{40}-61 q^{39}+131 q^{38}+193 q^{37}-192 q^{36}-199 q^{35}-372 q^{34}+386 q^{33}+907 q^{32}-7 q^{31}-645 q^{30}-1686 q^{29}+78 q^{28}+2318 q^{27}+1584 q^{26}-286 q^{25}-4171 q^{24}-2229 q^{23}+2995 q^{22}+4722 q^{21}+2593 q^{20}-6078 q^{19}-6548 q^{18}+1037 q^{17}+7450 q^{16}+7776 q^{15}-5461 q^{14}-10670 q^{13}-3245 q^{12}+7881 q^{11}+12898 q^{10}-2626 q^9-12675 q^8-7693 q^7+6233 q^6+16074 q^5+739 q^4-12520 q^3-10838 q^2+3699 q+17069+3699 q^{-1} -10838 q^{-2} -12520 q^{-3} +739 q^{-4} +16074 q^{-5} +6233 q^{-6} -7693 q^{-7} -12675 q^{-8} -2626 q^{-9} +12898 q^{-10} +7881 q^{-11} -3245 q^{-12} -10670 q^{-13} -5461 q^{-14} +7776 q^{-15} +7450 q^{-16} +1037 q^{-17} -6548 q^{-18} -6078 q^{-19} +2593 q^{-20} +4722 q^{-21} +2995 q^{-22} -2229 q^{-23} -4171 q^{-24} -286 q^{-25} +1584 q^{-26} +2318 q^{-27} +78 q^{-28} -1686 q^{-29} -645 q^{-30} -7 q^{-31} +907 q^{-32} +386 q^{-33} -372 q^{-34} -199 q^{-35} -192 q^{-36} +193 q^{-37} +131 q^{-38} -61 q^{-39} -4 q^{-40} -60 q^{-41} +31 q^{-42} +22 q^{-43} -17 q^{-44} +5 q^{-45} -9 q^{-46} +6 q^{-47} +3 q^{-48} -4 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+4 q^{74}-3 q^{73}-6 q^{72}+9 q^{71}-6 q^{69}+4 q^{68}-5 q^{67}-9 q^{66}+37 q^{65}+29 q^{64}-48 q^{63}-83 q^{62}-68 q^{61}+46 q^{60}+244 q^{59}+301 q^{58}-24 q^{57}-573 q^{56}-787 q^{55}-287 q^{54}+875 q^{53}+1843 q^{52}+1364 q^{51}-921 q^{50}-3428 q^{49}-3602 q^{48}-259 q^{47}+4964 q^{46}+7568 q^{45}+3700 q^{44}-5394 q^{43}-12667 q^{42}-10365 q^{41}+2685 q^{40}+17588 q^{39}+20463 q^{38}+4813 q^{37}-19877 q^{36}-32656 q^{35}-18124 q^{34}+16897 q^{33}+44345 q^{32}+36630 q^{31}-6744 q^{30}-52443 q^{29}-57942 q^{28}-10715 q^{27}+54076 q^{26}+78732 q^{25}+34017 q^{24}-48179 q^{23}-95785 q^{22}-59901 q^{21}+35233 q^{20}+106740 q^{19}+85226 q^{18}-17417 q^{17}-111131 q^{16}-107011 q^{15}-2543 q^{14}+109646 q^{13}+123904 q^{12}+22010 q^{11}-104034 q^{10}-135442 q^9-39509 q^8+96005 q^7+142679 q^6+54100 q^5-86907 q^4-146180 q^3-66504 q^2+77050 q+147507+77050 q^{-1} -66504 q^{-2} -146180 q^{-3} -86907 q^{-4} +54100 q^{-5} +142679 q^{-6} +96005 q^{-7} -39509 q^{-8} -135442 q^{-9} -104034 q^{-10} +22010 q^{-11} +123904 q^{-12} +109646 q^{-13} -2543 q^{-14} -107011 q^{-15} -111131 q^{-16} -17417 q^{-17} +85226 q^{-18} +106740 q^{-19} +35233 q^{-20} -59901 q^{-21} -95785 q^{-22} -48179 q^{-23} +34017 q^{-24} +78732 q^{-25} +54076 q^{-26} -10715 q^{-27} -57942 q^{-28} -52443 q^{-29} -6744 q^{-30} +36630 q^{-31} +44345 q^{-32} +16897 q^{-33} -18124 q^{-34} -32656 q^{-35} -19877 q^{-36} +4813 q^{-37} +20463 q^{-38} +17588 q^{-39} +2685 q^{-40} -10365 q^{-41} -12667 q^{-42} -5394 q^{-43} +3700 q^{-44} +7568 q^{-45} +4964 q^{-46} -259 q^{-47} -3602 q^{-48} -3428 q^{-49} -921 q^{-50} +1364 q^{-51} +1843 q^{-52} +875 q^{-53} -287 q^{-54} -787 q^{-55} -573 q^{-56} -24 q^{-57} +301 q^{-58} +244 q^{-59} +46 q^{-60} -68 q^{-61} -83 q^{-62} -48 q^{-63} +29 q^{-64} +37 q^{-65} -9 q^{-66} -5 q^{-67} +4 q^{-68} -6 q^{-69} +9 q^{-71} -6 q^{-72} -3 q^{-73} +4 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-4 q^{104}+3 q^{103}+6 q^{102}-9 q^{101}+q^{99}+19 q^{98}-21 q^{97}-17 q^{96}+32 q^{95}-45 q^{94}+8 q^{93}+50 q^{92}+128 q^{91}-41 q^{90}-167 q^{89}-62 q^{88}-286 q^{87}-16 q^{86}+387 q^{85}+900 q^{84}+404 q^{83}-424 q^{82}-881 q^{81}-2094 q^{80}-1401 q^{79}+650 q^{78}+3938 q^{77}+4458 q^{76}+2396 q^{75}-1204 q^{74}-8305 q^{73}-10766 q^{72}-6703 q^{71}+5801 q^{70}+16461 q^{69}+20757 q^{68}+14405 q^{67}-9709 q^{66}-33262 q^{65}-42976 q^{64}-22056 q^{63}+15948 q^{62}+58065 q^{61}+77950 q^{60}+42156 q^{59}-29551 q^{58}-104768 q^{57}-122544 q^{56}-71254 q^{55}+47281 q^{54}+171007 q^{53}+198422 q^{52}+103304 q^{51}-89064 q^{50}-253004 q^{49}-297475 q^{48}-141664 q^{47}+149780 q^{46}+383153 q^{45}+408243 q^{44}+154486 q^{43}-230153 q^{42}-546632 q^{41}-530354 q^{40}-143910 q^{39}+380359 q^{38}+726609 q^{37}+615539 q^{36}+96521 q^{35}-581428 q^{34}-920446 q^{33}-660120 q^{32}+60354 q^{31}+813628 q^{30}+1064305 q^{29}+635918 q^{28}-301929 q^{27}-1072972 q^{26}-1148980 q^{25}-451384 q^{24}+602132 q^{23}+1278685 q^{22}+1132696 q^{21}+144123 q^{20}-950647 q^{19}-1413224 q^{18}-910924 q^{17}+247709 q^{16}+1245688 q^{15}+1420940 q^{14}+538462 q^{13}-703247 q^{12}-1458570 q^{11}-1189250 q^{10}-66498 q^9+1100658 q^8+1522082 q^7+790633 q^6-474803 q^5-1403113 q^4-1322934 q^3-286649 q^2+950870 q+1538859+950870 q^{-1} -286649 q^{-2} -1322934 q^{-3} -1403113 q^{-4} -474803 q^{-5} +790633 q^{-6} +1522082 q^{-7} +1100658 q^{-8} -66498 q^{-9} -1189250 q^{-10} -1458570 q^{-11} -703247 q^{-12} +538462 q^{-13} +1420940 q^{-14} +1245688 q^{-15} +247709 q^{-16} -910924 q^{-17} -1413224 q^{-18} -950647 q^{-19} +144123 q^{-20} +1132696 q^{-21} +1278685 q^{-22} +602132 q^{-23} -451384 q^{-24} -1148980 q^{-25} -1072972 q^{-26} -301929 q^{-27} +635918 q^{-28} +1064305 q^{-29} +813628 q^{-30} +60354 q^{-31} -660120 q^{-32} -920446 q^{-33} -581428 q^{-34} +96521 q^{-35} +615539 q^{-36} +726609 q^{-37} +380359 q^{-38} -143910 q^{-39} -530354 q^{-40} -546632 q^{-41} -230153 q^{-42} +154486 q^{-43} +408243 q^{-44} +383153 q^{-45} +149780 q^{-46} -141664 q^{-47} -297475 q^{-48} -253004 q^{-49} -89064 q^{-50} +103304 q^{-51} +198422 q^{-52} +171007 q^{-53} +47281 q^{-54} -71254 q^{-55} -122544 q^{-56} -104768 q^{-57} -29551 q^{-58} +42156 q^{-59} +77950 q^{-60} +58065 q^{-61} +15948 q^{-62} -22056 q^{-63} -42976 q^{-64} -33262 q^{-65} -9709 q^{-66} +14405 q^{-67} +20757 q^{-68} +16461 q^{-69} +5801 q^{-70} -6703 q^{-71} -10766 q^{-72} -8305 q^{-73} -1204 q^{-74} +2396 q^{-75} +4458 q^{-76} +3938 q^{-77} +650 q^{-78} -1401 q^{-79} -2094 q^{-80} -881 q^{-81} -424 q^{-82} +404 q^{-83} +900 q^{-84} +387 q^{-85} -16 q^{-86} -286 q^{-87} -62 q^{-88} -167 q^{-89} -41 q^{-90} +128 q^{-91} +50 q^{-92} +8 q^{-93} -45 q^{-94} +32 q^{-95} -17 q^{-96} -21 q^{-97} +19 q^{-98} + q^{-99} -9 q^{-101} +6 q^{-102} +3 q^{-103} -4 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+4 q^{139}-3 q^{138}-6 q^{137}+9 q^{136}-q^{134}-14 q^{133}-2 q^{132}+43 q^{131}-6 q^{130}-24 q^{129}+8 q^{128}-27 q^{127}-23 q^{126}-69 q^{125}-8 q^{124}+242 q^{123}+163 q^{122}+35 q^{121}-72 q^{120}-385 q^{119}-411 q^{118}-518 q^{117}-142 q^{116}+1078 q^{115}+1554 q^{114}+1474 q^{113}+483 q^{112}-1739 q^{111}-3318 q^{110}-4454 q^{109}-3310 q^{108}+1813 q^{107}+7114 q^{106}+11157 q^{105}+10245 q^{104}+1633 q^{103}-9940 q^{102}-22433 q^{101}-27507 q^{100}-16520 q^{99}+6677 q^{98}+37057 q^{97}+58407 q^{96}+52468 q^{95}+18370 q^{94}-40973 q^{93}-100446 q^{92}-122513 q^{91}-89098 q^{90}+7781 q^{89}+133531 q^{88}+223614 q^{87}+228198 q^{86}+109054 q^{85}-106363 q^{84}-325147 q^{83}-443178 q^{82}-356501 q^{81}-55497 q^{80}+349552 q^{79}+689017 q^{78}+753321 q^{77}+439152 q^{76}-173905 q^{75}-857942 q^{74}-1254288 q^{73}-1089251 q^{72}-333822 q^{71}+773753 q^{70}+1714946 q^{69}+1964892 q^{68}+1265562 q^{67}-240851 q^{66}-1909001 q^{65}-2902350 q^{64}-2597945 q^{63}-884016 q^{62}+1573715 q^{61}+3625400 q^{60}+4160778 q^{59}+2617311 q^{58}-502842 q^{57}-3814742 q^{56}-5650023 q^{55}-4799031 q^{54}-1364682 q^{53}+3202185 q^{52}+6697142 q^{51}+7115131 q^{50}+3902842 q^{49}-1670439 q^{48}-6984275 q^{47}-9173314 q^{46}-6807311 q^{45}-696117 q^{44}+6335550 q^{43}+10610793 q^{42}+9681809 q^{41}+3632710 q^{40}-4775784 q^{39}-11201786 q^{38}-12142587 q^{37}-6760636 q^{36}+2515244 q^{35}+10900762 q^{34}+13915945 q^{33}+9700418 q^{32}+121154 q^{31}-9843831 q^{30}-14895676 q^{29}-12155512 q^{28}-2782605 q^{27}+8283604 q^{26}+15135646 q^{25}+13970837 q^{24}+5181766 q^{23}-6511733 q^{22}-14808343 q^{21}-15135897 q^{20}-7142924 q^{19}+4783786 q^{18}+14138213 q^{17}+15752305 q^{16}+8612048 q^{15}-3272853 q^{14}-13335658 q^{13}-15980950 q^{12}-9641991 q^{11}+2050425 q^{10}+12561147 q^9+15997522 q^8+10346608 q^7-1103802 q^6-11896387 q^5-15942378 q^4-10871239 q^3+344203 q^2+11352146 q+15915633+11352146 q^{-1} +344203 q^{-2} -10871239 q^{-3} -15942378 q^{-4} -11896387 q^{-5} -1103802 q^{-6} +10346608 q^{-7} +15997522 q^{-8} +12561147 q^{-9} +2050425 q^{-10} -9641991 q^{-11} -15980950 q^{-12} -13335658 q^{-13} -3272853 q^{-14} +8612048 q^{-15} +15752305 q^{-16} +14138213 q^{-17} +4783786 q^{-18} -7142924 q^{-19} -15135897 q^{-20} -14808343 q^{-21} -6511733 q^{-22} +5181766 q^{-23} +13970837 q^{-24} +15135646 q^{-25} +8283604 q^{-26} -2782605 q^{-27} -12155512 q^{-28} -14895676 q^{-29} -9843831 q^{-30} +121154 q^{-31} +9700418 q^{-32} +13915945 q^{-33} +10900762 q^{-34} +2515244 q^{-35} -6760636 q^{-36} -12142587 q^{-37} -11201786 q^{-38} -4775784 q^{-39} +3632710 q^{-40} +9681809 q^{-41} +10610793 q^{-42} +6335550 q^{-43} -696117 q^{-44} -6807311 q^{-45} -9173314 q^{-46} -6984275 q^{-47} -1670439 q^{-48} +3902842 q^{-49} +7115131 q^{-50} +6697142 q^{-51} +3202185 q^{-52} -1364682 q^{-53} -4799031 q^{-54} -5650023 q^{-55} -3814742 q^{-56} -502842 q^{-57} +2617311 q^{-58} +4160778 q^{-59} +3625400 q^{-60} +1573715 q^{-61} -884016 q^{-62} -2597945 q^{-63} -2902350 q^{-64} -1909001 q^{-65} -240851 q^{-66} +1265562 q^{-67} +1964892 q^{-68} +1714946 q^{-69} +773753 q^{-70} -333822 q^{-71} -1089251 q^{-72} -1254288 q^{-73} -857942 q^{-74} -173905 q^{-75} +439152 q^{-76} +753321 q^{-77} +689017 q^{-78} +349552 q^{-79} -55497 q^{-80} -356501 q^{-81} -443178 q^{-82} -325147 q^{-83} -106363 q^{-84} +109054 q^{-85} +228198 q^{-86} +223614 q^{-87} +133531 q^{-88} +7781 q^{-89} -89098 q^{-90} -122513 q^{-91} -100446 q^{-92} -40973 q^{-93} +18370 q^{-94} +52468 q^{-95} +58407 q^{-96} +37057 q^{-97} +6677 q^{-98} -16520 q^{-99} -27507 q^{-100} -22433 q^{-101} -9940 q^{-102} +1633 q^{-103} +10245 q^{-104} +11157 q^{-105} +7114 q^{-106} +1813 q^{-107} -3310 q^{-108} -4454 q^{-109} -3318 q^{-110} -1739 q^{-111} +483 q^{-112} +1474 q^{-113} +1554 q^{-114} +1078 q^{-115} -142 q^{-116} -518 q^{-117} -411 q^{-118} -385 q^{-119} -72 q^{-120} +35 q^{-121} +163 q^{-122} +242 q^{-123} -8 q^{-124} -69 q^{-125} -23 q^{-126} -27 q^{-127} +8 q^{-128} -24 q^{-129} -6 q^{-130} +43 q^{-131} -2 q^{-132} -14 q^{-133} - q^{-134} +9 q^{-136} -6 q^{-137} -3 q^{-138} +4 q^{-139} - q^{-140} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 82: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 118]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 118]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[12, 19, 13, 20], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[12, 19, 13, 20], |
|||
X[14, 7, 15, 8], X[8, 3, 9, 4], X[2, 16, 3, 15], X[10, 18, 11, 17], |
X[14, 7, 15, 8], X[8, 3, 9, 4], X[2, 16, 3, 15], X[10, 18, 11, 17], |
||
X[16, 10, 17, 9], X[4, 11, 5, 12]]</nowiki></pre></td></tr> |
X[16, 10, 17, 9], X[4, 11, 5, 12]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 118]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 118]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -7, 6, -10, 2, -1, 5, -6, 9, -8, 10, -4, 3, -5, 7, -9, 8, |
|||
-2, 4, -3]</nowiki></pre></td></tr> |
-2, 4, -3]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 118]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 118]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 18, 14, 16, 4, 20, 2, 10, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 118]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, -2, 1, -2, 1, -2, -2, 1, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, -2, 1, -2, 1, -2, -2, 1, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 118]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 118]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 118]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_118_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 118]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, 1, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 118]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 5 12 19 2 3 4 |
|||
23 + t - -- + -- - -- - 19 t + 12 t - 5 t + t |
23 + t - -- + -- - -- - 19 t + 12 t - 5 t + t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 118]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 118]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 |
|||
1 + 2 z + 3 z + z</nowiki></pre></td></tr> |
1 + 2 z + 3 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 118], Knot[11, Alternating, 257]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{97, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 118]], KnotSignature[Knot[10, 118]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{97, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 118]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 4 8 12 15 2 3 4 5 |
|||
17 - q + -- - -- + -- - -- - 15 q + 12 q - 8 q + 4 q - q |
17 - q + -- - -- + -- - -- - 15 q + 12 q - 8 q + 4 q - q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 118]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 118]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 118]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 2 2 2 2 4 2 4 8 10 |
|||
-3 - q + --- - --- + -- - -- + -- + 4 q - 2 q + 2 q - 2 q + |
-3 - q + --- - --- + -- - -- + -- + 4 q - 2 q + 2 q - 2 q + |
||
12 10 8 4 2 |
12 10 8 4 2 |
||
Line 92: | Line 146: | ||
12 14 |
12 14 |
||
2 q - q</nowiki></pre></td></tr> |
2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 118]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 118]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
2 2 z 2 2 4 3 z 2 4 6 z 2 6 |
|||
1 + 4 z - ---- - 2 a z + 8 z - ---- - 3 a z + 5 z - -- - a z + |
|||
2 2 2 |
|||
a a a |
|||
8 |
|||
z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 118]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 3 |
|||
z 3 z 3 2 z 2 z 2 2 4 2 z |
z 3 z 3 2 z 2 z 2 2 4 2 z |
||
1 - -- - --- - 3 a z - a z - 6 z + -- - ---- - 2 a z + a z - -- + |
1 - -- - --- - 3 a z - a z - 6 z + -- - ---- - 2 a z + a z - -- + |
||
Line 122: | Line 187: | ||
2 a |
2 a |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 118]], Vassiliev[3][Knot[10, 118]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 118]], Vassiliev[3][Knot[10, 118]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9 1 3 1 5 3 7 5 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 118]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9 1 3 1 5 3 7 5 |
|||
- + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 137: | Line 204: | ||
7 4 9 4 11 5 |
7 4 9 4 11 5 |
||
q t + 3 q t + q t</nowiki></pre></td></tr> |
q t + 3 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 118], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 4 3 11 27 8 52 76 8 130 122 |
|||
241 + q - --- + --- + --- - --- + --- + -- - -- - -- + --- - --- - |
|||
14 13 12 11 10 9 8 7 6 5 |
|||
q q q q q q q q q q |
|||
55 208 134 107 2 3 4 5 |
|||
-- + --- - --- - --- - 107 q - 134 q + 208 q - 55 q - 122 q + |
|||
4 3 2 q |
|||
q q q |
|||
6 7 8 9 10 11 12 13 |
|||
130 q - 8 q - 76 q + 52 q + 8 q - 27 q + 11 q + 3 q - |
|||
14 15 |
|||
4 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:23, 29 August 2005
|
|
Visit 10 118's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 118's page at Knotilus! Visit 10 118's page at the original Knot Atlas! |
10 118 Further Notes and Views
Knot presentations
Planar diagram presentation | X6271 X18,6,19,5 X20,13,1,14 X12,19,13,20 X14,7,15,8 X8394 X2,16,3,15 X10,18,11,17 X16,10,17,9 X4,11,5,12 |
Gauss code | 1, -7, 6, -10, 2, -1, 5, -6, 9, -8, 10, -4, 3, -5, 7, -9, 8, -2, 4, -3 |
Dowker-Thistlethwaite code | 6 8 18 14 16 4 20 2 10 12 |
Conway Notation | [8*2:.2] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 118"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 97, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a257, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (0, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 118. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.