10 117
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 117's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1627 X5,16,6,17 X13,1,14,20 X7,15,8,14 X19,9,20,8 X3,11,4,10 X11,5,12,4 X9,19,10,18 X17,13,18,12 X15,2,16,3 |
| Gauss code | -1, 10, -6, 7, -2, 1, -4, 5, -8, 6, -7, 9, -3, 4, -10, 2, -9, 8, -5, 3 |
| Dowker-Thistlethwaite code | 6 10 16 14 18 4 20 2 12 8 |
| Conway Notation | [8*2:20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{12, 4}, {3, 10}, {5, 11}, {4, 6}, {2, 5}, {7, 3}, {6, 9}, {10, 8}, {9, 13}, {8, 12}, {1, 7}, {13, 2}, {11, 1}] |
[edit Notes on presentations of 10 117]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 117"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X5,16,6,17 X13,1,14,20 X7,15,8,14 X19,9,20,8 X3,11,4,10 X11,5,12,4 X9,19,10,18 X17,13,18,12 X15,2,16,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -6, 7, -2, 1, -4, 5, -8, 6, -7, 9, -3, 4, -10, 2, -9, 8, -5, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 16 14 18 4 20 2 12 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[8*2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 4}, {3, 10}, {5, 11}, {4, 6}, {2, 5}, {7, 3}, {6, 9}, {10, 8}, {9, 13}, {8, 12}, {1, 7}, {13, 2}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 117"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 103, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a23, K11a111,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 117"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a23, K11a111,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 117. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23}-4 q^{22}+4 q^{21}+11 q^{20}-32 q^{19}+11 q^{18}+62 q^{17}-91 q^{16}-11 q^{15}+156 q^{14}-142 q^{13}-70 q^{12}+245 q^{11}-151 q^{10}-132 q^9+279 q^8-116 q^7-162 q^6+238 q^5-54 q^4-144 q^3+144 q^2-3 q-85+54 q^{-1} +10 q^{-2} -28 q^{-3} +11 q^{-4} +3 q^{-5} -4 q^{-6} + q^{-7} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{45}+4 q^{44}-4 q^{43}-6 q^{42}+8 q^{41}+22 q^{40}-19 q^{39}-65 q^{38}+34 q^{37}+145 q^{36}-21 q^{35}-275 q^{34}-59 q^{33}+456 q^{32}+213 q^{31}-621 q^{30}-485 q^{29}+752 q^{28}+832 q^{27}-793 q^{26}-1222 q^{25}+742 q^{24}+1592 q^{23}-600 q^{22}-1904 q^{21}+394 q^{20}+2138 q^{19}-170 q^{18}-2255 q^{17}-87 q^{16}+2293 q^{15}+312 q^{14}-2195 q^{13}-556 q^{12}+2025 q^{11}+739 q^{10}-1733 q^9-887 q^8+1386 q^7+936 q^6-984 q^5-910 q^4+626 q^3+768 q^2-311 q-590+113 q^{-1} +389 q^{-2} -5 q^{-3} -225 q^{-4} -26 q^{-5} +109 q^{-6} +27 q^{-7} -51 q^{-8} -11 q^{-9} +19 q^{-10} +4 q^{-11} -6 q^{-12} -3 q^{-13} +4 q^{-14} - q^{-15} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-4 q^{73}+4 q^{72}+6 q^{71}-13 q^{70}+2 q^{69}-14 q^{68}+38 q^{67}+46 q^{66}-88 q^{65}-53 q^{64}-87 q^{63}+214 q^{62}+349 q^{61}-203 q^{60}-415 q^{59}-686 q^{58}+456 q^{57}+1495 q^{56}+419 q^{55}-901 q^{54}-2805 q^{53}-534 q^{52}+3266 q^{51}+3182 q^{50}+346 q^{49}-6096 q^{48}-4545 q^{47}+3246 q^{46}+7568 q^{45}+5377 q^{44}-7709 q^{43}-10783 q^{42}-763 q^{41}+10486 q^{40}+13037 q^{39}-5450 q^{38}-15867 q^{37}-7514 q^{36}+9848 q^{35}+19812 q^{34}-491 q^{33}-17645 q^{32}-13824 q^{31}+6586 q^{30}+23528 q^{29}+4657 q^{28}-16540 q^{27}-17947 q^{26}+2447 q^{25}+24171 q^{24}+8872 q^{23}-13455 q^{22}-19780 q^{21}-2028 q^{20}+21961 q^{19}+12073 q^{18}-8455 q^{17}-19075 q^{16}-6616 q^{15}+16639 q^{14}+13394 q^{13}-2078 q^{12}-15051 q^{11}-9723 q^{10}+8999 q^9+11381 q^8+3259 q^7-8428 q^6-9269 q^5+2126 q^4+6525 q^3+4878 q^2-2399 q-5685-1045 q^{-1} +1945 q^{-2} +3200 q^{-3} +355 q^{-4} -2079 q^{-5} -1000 q^{-6} -61 q^{-7} +1128 q^{-8} +521 q^{-9} -418 q^{-10} -272 q^{-11} -228 q^{-12} +223 q^{-13} +156 q^{-14} -65 q^{-15} -11 q^{-16} -65 q^{-17} +34 q^{-18} +24 q^{-19} -18 q^{-20} +5 q^{-21} -9 q^{-22} +6 q^{-23} +3 q^{-24} -4 q^{-25} + q^{-26} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




