10 117
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 117's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1627 X5,16,6,17 X13,1,14,20 X7,15,8,14 X19,9,20,8 X3,11,4,10 X11,5,12,4 X9,19,10,18 X17,13,18,12 X15,2,16,3 |
| Gauss code | -1, 10, -6, 7, -2, 1, -4, 5, -8, 6, -7, 9, -3, 4, -10, 2, -9, 8, -5, 3 |
| Dowker-Thistlethwaite code | 6 10 16 14 18 4 20 2 12 8 |
| Conway Notation | [8*2:20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{12, 4}, {3, 10}, {5, 11}, {4, 6}, {2, 5}, {7, 3}, {6, 9}, {10, 8}, {9, 13}, {8, 12}, {1, 7}, {13, 2}, {11, 1}] |
[edit Notes on presentations of 10 117]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 117"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X5,16,6,17 X13,1,14,20 X7,15,8,14 X19,9,20,8 X3,11,4,10 X11,5,12,4 X9,19,10,18 X17,13,18,12 X15,2,16,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -6, 7, -2, 1, -4, 5, -8, 6, -7, 9, -3, 4, -10, 2, -9, 8, -5, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 16 14 18 4 20 2 12 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[8*2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 4}, {3, 10}, {5, 11}, {4, 6}, {2, 5}, {7, 3}, {6, 9}, {10, 8}, {9, 13}, {8, 12}, {1, 7}, {13, 2}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-3 q^{14}+10 q^{10}-14 q^8-7 q^6+36 q^4-21 q^2-34+56 q^{-2} -3 q^{-4} -54 q^{-6} +40 q^{-8} +22 q^{-10} -40 q^{-12} + q^{-14} +31 q^{-16} -4 q^{-18} -38 q^{-20} +24 q^{-22} +33 q^{-24} -56 q^{-26} +3 q^{-28} +54 q^{-30} -40 q^{-32} -18 q^{-34} +41 q^{-36} -10 q^{-38} -17 q^{-40} +11 q^{-42} + q^{-44} -3 q^{-46} + q^{-48} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{33}+3 q^{31}-6 q^{27}-q^{25}+14 q^{23}+6 q^{21}-39 q^{19}-16 q^{17}+74 q^{15}+59 q^{13}-115 q^{11}-147 q^9+133 q^7+272 q^5-93 q^3-399 q-20 q^{-1} +493 q^{-3} +173 q^{-5} -500 q^{-7} -332 q^{-9} +428 q^{-11} +451 q^{-13} -298 q^{-15} -495 q^{-17} +144 q^{-19} +475 q^{-21} +13 q^{-23} -414 q^{-25} -146 q^{-27} +323 q^{-29} +263 q^{-31} -219 q^{-33} -374 q^{-35} +107 q^{-37} +458 q^{-39} +28 q^{-41} -518 q^{-43} -170 q^{-45} +512 q^{-47} +319 q^{-49} -441 q^{-51} -431 q^{-53} +306 q^{-55} +478 q^{-57} -141 q^{-59} -437 q^{-61} -11 q^{-63} +335 q^{-65} +101 q^{-67} -210 q^{-69} -117 q^{-71} +93 q^{-73} +95 q^{-75} -28 q^{-77} -54 q^{-79} +5 q^{-81} +20 q^{-83} +2 q^{-85} -7 q^{-87} - q^{-89} +3 q^{-91} - q^{-93} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+2 q^4-q^2-1+4 q^{-2} -3 q^{-4} +3 q^{-6} +3 q^{-12} -3 q^{-14} +3 q^{-16} -2 q^{-18} -2 q^{-20} +2 q^{-22} - q^{-24} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-6 q^{18}+20 q^{16}-50 q^{14}+107 q^{12}-206 q^{10}+360 q^8-594 q^6+914 q^4-1306 q^2+1748-2170 q^{-2} +2477 q^{-4} -2562 q^{-6} +2350 q^{-8} -1780 q^{-10} +871 q^{-12} +322 q^{-14} -1636 q^{-16} +2924 q^{-18} -4030 q^{-20} +4806 q^{-22} -5162 q^{-24} +5046 q^{-26} -4476 q^{-28} +3528 q^{-30} -2312 q^{-32} +982 q^{-34} +301 q^{-36} -1396 q^{-38} +2168 q^{-40} -2576 q^{-42} +2636 q^{-44} -2420 q^{-46} +2024 q^{-48} -1544 q^{-50} +1087 q^{-52} -708 q^{-54} +422 q^{-56} -230 q^{-58} +113 q^{-60} -50 q^{-62} +20 q^{-64} -6 q^{-66} + q^{-68} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-2 q^{16}-2 q^{14}+6 q^{12}+2 q^{10}-11 q^8-6 q^6+17 q^4+10 q^2-22-8 q^{-2} +28 q^{-4} +5 q^{-6} -27 q^{-8} +2 q^{-10} +21 q^{-12} -2 q^{-14} -12 q^{-16} +10 q^{-18} +9 q^{-20} -15 q^{-22} +8 q^{-24} +8 q^{-26} -18 q^{-28} -7 q^{-30} +22 q^{-32} + q^{-34} -26 q^{-36} +3 q^{-38} +23 q^{-40} - q^{-42} -24 q^{-44} +5 q^{-46} +17 q^{-48} -3 q^{-50} -9 q^{-52} -2 q^{-54} +6 q^{-56} -2 q^{-60} + q^{-62} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}-3 q^{12}+q^{10}+7 q^8-13 q^6+3 q^4+21 q^2-29+3 q^{-2} +36 q^{-4} -40 q^{-6} +2 q^{-8} +38 q^{-10} -29 q^{-12} -4 q^{-14} +23 q^{-16} -3 q^{-18} -9 q^{-20} -2 q^{-22} +21 q^{-24} -6 q^{-26} -30 q^{-28} +32 q^{-30} +2 q^{-32} -43 q^{-34} +34 q^{-36} +6 q^{-38} -32 q^{-40} +23 q^{-42} +3 q^{-44} -14 q^{-46} +8 q^{-48} + q^{-50} -3 q^{-52} + q^{-54} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^5-2 q^3+2 q-2 q^{-1} +4 q^{-3} -3 q^{-5} +3 q^{-7} + q^{-11} + q^{-13} +3 q^{-17} -3 q^{-19} +3 q^{-21} -3 q^{-23} + q^{-25} -3 q^{-27} +2 q^{-29} - q^{-31} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^6-2 q^4+q^2+1-2 q^{-2} +4 q^{-4} -3 q^{-6} +3 q^{-8} + q^{-12} + q^{-14} + q^{-16} + q^{-18} +3 q^{-22} -3 q^{-24} +3 q^{-26} -3 q^{-28} -3 q^{-34} +2 q^{-36} - q^{-38} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+3 q^{12}-7 q^{10}+13 q^8-21 q^6+31 q^4-41 q^2+49-51 q^{-2} +48 q^{-4} -36 q^{-6} +20 q^{-8} +4 q^{-10} -29 q^{-12} +56 q^{-14} -77 q^{-16} +93 q^{-18} -99 q^{-20} +96 q^{-22} -83 q^{-24} +62 q^{-26} -36 q^{-28} +10 q^{-30} +14 q^{-32} -33 q^{-34} +46 q^{-36} -52 q^{-38} +50 q^{-40} -45 q^{-42} +35 q^{-44} -24 q^{-46} +14 q^{-48} -7 q^{-50} +3 q^{-52} - q^{-54} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{24}-3 q^{20}-3 q^{18}+4 q^{16}+10 q^{14}-17 q^{10}-13 q^8+17 q^6+31 q^4-3 q^2-43-21 q^{-2} +39 q^{-4} +45 q^{-6} -19 q^{-8} -55 q^{-10} -6 q^{-12} +52 q^{-14} +26 q^{-16} -36 q^{-18} -34 q^{-20} +23 q^{-22} +37 q^{-24} -10 q^{-26} -36 q^{-28} +3 q^{-30} +36 q^{-32} +6 q^{-34} -34 q^{-36} -14 q^{-38} +33 q^{-40} +25 q^{-42} -31 q^{-44} -39 q^{-46} +20 q^{-48} +50 q^{-50} -2 q^{-52} -55 q^{-54} -25 q^{-56} +43 q^{-58} +44 q^{-60} -20 q^{-62} -46 q^{-64} -5 q^{-66} +34 q^{-68} +19 q^{-70} -15 q^{-72} -19 q^{-74} + q^{-76} +11 q^{-78} +4 q^{-80} -3 q^{-82} -3 q^{-84} + q^{-88} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-3 q^{16}+4 q^{14}-6 q^{12}+11 q^{10}-17 q^8+20 q^6-24 q^4+34 q^2-39+38 q^{-2} -38 q^{-4} +41 q^{-6} -33 q^{-8} +20 q^{-10} -12 q^{-12} +4 q^{-14} +19 q^{-16} -34 q^{-18} +43 q^{-20} -53 q^{-22} +73 q^{-24} -73 q^{-26} +74 q^{-28} -74 q^{-30} +75 q^{-32} -58 q^{-34} +47 q^{-36} -42 q^{-38} +21 q^{-40} -4 q^{-42} -10 q^{-44} +13 q^{-46} -31 q^{-48} +39 q^{-50} -39 q^{-52} +40 q^{-54} -41 q^{-56} +37 q^{-58} -27 q^{-60} +23 q^{-62} -19 q^{-64} +12 q^{-66} -6 q^{-68} +4 q^{-70} -3 q^{-72} + q^{-74} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-3 q^{30}+7 q^{28}-13 q^{26}+15 q^{24}-14 q^{22}+3 q^{20}+21 q^{18}-49 q^{16}+81 q^{14}-100 q^{12}+87 q^{10}-40 q^8-54 q^6+173 q^4-269 q^2+308-240 q^{-2} +63 q^{-4} +178 q^{-6} -398 q^{-8} +501 q^{-10} -428 q^{-12} +190 q^{-14} +119 q^{-16} -379 q^{-18} +476 q^{-20} -352 q^{-22} +81 q^{-24} +223 q^{-26} -405 q^{-28} +367 q^{-30} -133 q^{-32} -203 q^{-34} +486 q^{-36} -585 q^{-38} +465 q^{-40} -143 q^{-42} -252 q^{-44} +583 q^{-46} -727 q^{-48} +629 q^{-50} -331 q^{-52} -66 q^{-54} +415 q^{-56} -593 q^{-58} +555 q^{-60} -307 q^{-62} -27 q^{-64} +311 q^{-66} -430 q^{-68} +315 q^{-70} -41 q^{-72} -263 q^{-74} +450 q^{-76} -428 q^{-78} +211 q^{-80} +108 q^{-82} -391 q^{-84} +522 q^{-86} -465 q^{-88} +250 q^{-90} +19 q^{-92} -247 q^{-94} +349 q^{-96} -321 q^{-98} +213 q^{-100} -69 q^{-102} -46 q^{-104} +107 q^{-106} -122 q^{-108} +94 q^{-110} -52 q^{-112} +18 q^{-114} +7 q^{-116} -16 q^{-118} +16 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 117"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 103, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a23, K11a111,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 117"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-10 t^2+24 t-31+24 t^{-1} -10 t^{-2} +2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+4 q^7-9 q^6+13 q^5-16 q^4+18 q^3-16 q^2+13 q-8+4 q^{-1} - q^{-2} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a23, K11a111,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 117. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23}-4 q^{22}+4 q^{21}+11 q^{20}-32 q^{19}+11 q^{18}+62 q^{17}-91 q^{16}-11 q^{15}+156 q^{14}-142 q^{13}-70 q^{12}+245 q^{11}-151 q^{10}-132 q^9+279 q^8-116 q^7-162 q^6+238 q^5-54 q^4-144 q^3+144 q^2-3 q-85+54 q^{-1} +10 q^{-2} -28 q^{-3} +11 q^{-4} +3 q^{-5} -4 q^{-6} + q^{-7} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{45}+4 q^{44}-4 q^{43}-6 q^{42}+8 q^{41}+22 q^{40}-19 q^{39}-65 q^{38}+34 q^{37}+145 q^{36}-21 q^{35}-275 q^{34}-59 q^{33}+456 q^{32}+213 q^{31}-621 q^{30}-485 q^{29}+752 q^{28}+832 q^{27}-793 q^{26}-1222 q^{25}+742 q^{24}+1592 q^{23}-600 q^{22}-1904 q^{21}+394 q^{20}+2138 q^{19}-170 q^{18}-2255 q^{17}-87 q^{16}+2293 q^{15}+312 q^{14}-2195 q^{13}-556 q^{12}+2025 q^{11}+739 q^{10}-1733 q^9-887 q^8+1386 q^7+936 q^6-984 q^5-910 q^4+626 q^3+768 q^2-311 q-590+113 q^{-1} +389 q^{-2} -5 q^{-3} -225 q^{-4} -26 q^{-5} +109 q^{-6} +27 q^{-7} -51 q^{-8} -11 q^{-9} +19 q^{-10} +4 q^{-11} -6 q^{-12} -3 q^{-13} +4 q^{-14} - q^{-15} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-4 q^{73}+4 q^{72}+6 q^{71}-13 q^{70}+2 q^{69}-14 q^{68}+38 q^{67}+46 q^{66}-88 q^{65}-53 q^{64}-87 q^{63}+214 q^{62}+349 q^{61}-203 q^{60}-415 q^{59}-686 q^{58}+456 q^{57}+1495 q^{56}+419 q^{55}-901 q^{54}-2805 q^{53}-534 q^{52}+3266 q^{51}+3182 q^{50}+346 q^{49}-6096 q^{48}-4545 q^{47}+3246 q^{46}+7568 q^{45}+5377 q^{44}-7709 q^{43}-10783 q^{42}-763 q^{41}+10486 q^{40}+13037 q^{39}-5450 q^{38}-15867 q^{37}-7514 q^{36}+9848 q^{35}+19812 q^{34}-491 q^{33}-17645 q^{32}-13824 q^{31}+6586 q^{30}+23528 q^{29}+4657 q^{28}-16540 q^{27}-17947 q^{26}+2447 q^{25}+24171 q^{24}+8872 q^{23}-13455 q^{22}-19780 q^{21}-2028 q^{20}+21961 q^{19}+12073 q^{18}-8455 q^{17}-19075 q^{16}-6616 q^{15}+16639 q^{14}+13394 q^{13}-2078 q^{12}-15051 q^{11}-9723 q^{10}+8999 q^9+11381 q^8+3259 q^7-8428 q^6-9269 q^5+2126 q^4+6525 q^3+4878 q^2-2399 q-5685-1045 q^{-1} +1945 q^{-2} +3200 q^{-3} +355 q^{-4} -2079 q^{-5} -1000 q^{-6} -61 q^{-7} +1128 q^{-8} +521 q^{-9} -418 q^{-10} -272 q^{-11} -228 q^{-12} +223 q^{-13} +156 q^{-14} -65 q^{-15} -11 q^{-16} -65 q^{-17} +34 q^{-18} +24 q^{-19} -18 q^{-20} +5 q^{-21} -9 q^{-22} +6 q^{-23} +3 q^{-24} -4 q^{-25} + q^{-26} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




