10 149: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[9_20]], [[K11n26]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
| Line 40: | Line 70: | ||
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math> q^{-3} +2 q^{-4} -6 q^{-5} +2 q^{-6} +14 q^{-7} -18 q^{-8} -6 q^{-9} +36 q^{-10} -28 q^{-11} -21 q^{-12} +55 q^{-13} -29 q^{-14} -34 q^{-15} +61 q^{-16} -22 q^{-17} -37 q^{-18} +50 q^{-19} -10 q^{-20} -29 q^{-21} +27 q^{-22} -14 q^{-24} +8 q^{-25} + q^{-26} -3 q^{-27} + q^{-28} </math>|J3=<math>2 q^{-4} - q^{-6} -9 q^{-7} +7 q^{-8} +15 q^{-9} +4 q^{-10} -36 q^{-11} -13 q^{-12} +47 q^{-13} +46 q^{-14} -65 q^{-15} -75 q^{-16} +58 q^{-17} +126 q^{-18} -60 q^{-19} -159 q^{-20} +35 q^{-21} +201 q^{-22} -16 q^{-23} -227 q^{-24} -11 q^{-25} +248 q^{-26} +34 q^{-27} -257 q^{-28} -55 q^{-29} +252 q^{-30} +78 q^{-31} -241 q^{-32} -90 q^{-33} +210 q^{-34} +105 q^{-35} -176 q^{-36} -103 q^{-37} +127 q^{-38} +101 q^{-39} -86 q^{-40} -84 q^{-41} +48 q^{-42} +62 q^{-43} -22 q^{-44} -40 q^{-45} +7 q^{-46} +24 q^{-47} -3 q^{-48} -11 q^{-49} + q^{-50} +4 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math>|J4=<math> q^{-4} +2 q^{-5} -6 q^{-7} -4 q^{-8} -4 q^{-9} +17 q^{-10} +26 q^{-11} -10 q^{-12} -26 q^{-13} -63 q^{-14} +12 q^{-15} +104 q^{-16} +59 q^{-17} + q^{-18} -206 q^{-19} -119 q^{-20} +140 q^{-21} +222 q^{-22} +211 q^{-23} -310 q^{-24} -385 q^{-25} -17 q^{-26} +337 q^{-27} +604 q^{-28} -226 q^{-29} -631 q^{-30} -354 q^{-31} +271 q^{-32} +1008 q^{-33} +27 q^{-34} -729 q^{-35} -718 q^{-36} +63 q^{-37} +1289 q^{-38} +310 q^{-39} -699 q^{-40} -987 q^{-41} -164 q^{-42} +1416 q^{-43} +532 q^{-44} -592 q^{-45} -1135 q^{-46} -362 q^{-47} +1396 q^{-48} +682 q^{-49} -416 q^{-50} -1144 q^{-51} -538 q^{-52} +1193 q^{-53} +743 q^{-54} -151 q^{-55} -972 q^{-56} -658 q^{-57} +807 q^{-58} +652 q^{-59} +123 q^{-60} -622 q^{-61} -623 q^{-62} +370 q^{-63} +404 q^{-64} +251 q^{-65} -251 q^{-66} -415 q^{-67} +91 q^{-68} +140 q^{-69} +190 q^{-70} -38 q^{-71} -182 q^{-72} +9 q^{-73} +10 q^{-74} +79 q^{-75} +9 q^{-76} -56 q^{-77} +7 q^{-78} -9 q^{-79} +20 q^{-80} +5 q^{-81} -14 q^{-82} +4 q^{-83} -3 q^{-84} +4 q^{-85} + q^{-86} -3 q^{-87} + q^{-88} </math>|J5=<math>2 q^{-4} +2 q^{-6} -3 q^{-7} -9 q^{-8} -9 q^{-9} +9 q^{-10} +11 q^{-11} +31 q^{-12} +25 q^{-13} -32 q^{-14} -73 q^{-15} -57 q^{-16} -17 q^{-17} +100 q^{-18} +196 q^{-19} +100 q^{-20} -111 q^{-21} -277 q^{-22} -325 q^{-23} -41 q^{-24} +409 q^{-25} +594 q^{-26} +303 q^{-27} -313 q^{-28} -904 q^{-29} -803 q^{-30} +93 q^{-31} +1076 q^{-32} +1353 q^{-33} +491 q^{-34} -1084 q^{-35} -1958 q^{-36} -1191 q^{-37} +743 q^{-38} +2379 q^{-39} +2157 q^{-40} -183 q^{-41} -2650 q^{-42} -2986 q^{-43} -682 q^{-44} +2585 q^{-45} +3864 q^{-46} +1611 q^{-47} -2368 q^{-48} -4448 q^{-49} -2586 q^{-50} +1894 q^{-51} +4953 q^{-52} +3466 q^{-53} -1410 q^{-54} -5204 q^{-55} -4234 q^{-56} +870 q^{-57} +5365 q^{-58} +4853 q^{-59} -384 q^{-60} -5409 q^{-61} -5339 q^{-62} -65 q^{-63} +5381 q^{-64} +5713 q^{-65} +490 q^{-66} -5288 q^{-67} -5985 q^{-68} -898 q^{-69} +5063 q^{-70} +6180 q^{-71} +1348 q^{-72} -4746 q^{-73} -6226 q^{-74} -1810 q^{-75} +4196 q^{-76} +6146 q^{-77} +2307 q^{-78} -3525 q^{-79} -5816 q^{-80} -2713 q^{-81} +2612 q^{-82} +5272 q^{-83} +3034 q^{-84} -1697 q^{-85} -4455 q^{-86} -3094 q^{-87} +745 q^{-88} +3485 q^{-89} +2936 q^{-90} +4 q^{-91} -2461 q^{-92} -2504 q^{-93} -525 q^{-94} +1518 q^{-95} +1938 q^{-96} +745 q^{-97} -764 q^{-98} -1339 q^{-99} -736 q^{-100} +277 q^{-101} +809 q^{-102} +572 q^{-103} -7 q^{-104} -418 q^{-105} -394 q^{-106} -73 q^{-107} +188 q^{-108} +217 q^{-109} +73 q^{-110} -61 q^{-111} -107 q^{-112} -56 q^{-113} +24 q^{-114} +50 q^{-115} +20 q^{-116} -9 q^{-117} -10 q^{-118} -14 q^{-119} -2 q^{-120} +15 q^{-121} + q^{-122} -6 q^{-123} + q^{-124} -3 q^{-126} +4 q^{-127} + q^{-128} -3 q^{-129} + q^{-130} </math>|J6=<math> q^{-3} +2 q^{-4} -4 q^{-7} -6 q^{-8} -12 q^{-9} -4 q^{-10} +17 q^{-11} +32 q^{-12} +32 q^{-13} +15 q^{-14} -9 q^{-15} -94 q^{-16} -118 q^{-17} -75 q^{-18} +58 q^{-19} +172 q^{-20} +246 q^{-21} +273 q^{-22} -47 q^{-23} -367 q^{-24} -607 q^{-25} -442 q^{-26} -78 q^{-27} +538 q^{-28} +1223 q^{-29} +991 q^{-30} +217 q^{-31} -1065 q^{-32} -1748 q^{-33} -1913 q^{-34} -686 q^{-35} +1687 q^{-36} +3033 q^{-37} +3045 q^{-38} +790 q^{-39} -1890 q^{-40} -4813 q^{-41} -4841 q^{-42} -1208 q^{-43} +3236 q^{-44} +6832 q^{-45} +6177 q^{-46} +2410 q^{-47} -5114 q^{-48} -9796 q^{-49} -8228 q^{-50} -1777 q^{-51} +7270 q^{-52} +12173 q^{-53} +11251 q^{-54} +383 q^{-55} -10932 q^{-56} -15783 q^{-57} -11376 q^{-58} +1632 q^{-59} +14200 q^{-60} +20532 q^{-61} +10341 q^{-62} -6174 q^{-63} -19536 q^{-64} -21236 q^{-65} -8119 q^{-66} +10875 q^{-67} +26268 q^{-68} +20425 q^{-69} +2105 q^{-70} -18630 q^{-71} -27853 q^{-72} -17790 q^{-73} +4709 q^{-74} +27892 q^{-75} +27584 q^{-76} +10132 q^{-77} -15352 q^{-78} -30885 q^{-79} -24815 q^{-80} -1144 q^{-81} +27269 q^{-82} +31596 q^{-83} +15978 q^{-84} -12047 q^{-85} -31830 q^{-86} -29176 q^{-87} -5473 q^{-88} +26000 q^{-89} +33694 q^{-90} +19989 q^{-91} -9201 q^{-92} -31763 q^{-93} -32050 q^{-94} -9069 q^{-95} +24016 q^{-96} +34648 q^{-97} +23419 q^{-98} -5642 q^{-99} -30221 q^{-100} -33983 q^{-101} -13285 q^{-102} +19844 q^{-103} +33650 q^{-104} +26588 q^{-105} -7 q^{-106} -25487 q^{-107} -33750 q^{-108} -18087 q^{-109} +12234 q^{-110} +28704 q^{-111} +27725 q^{-112} +7113 q^{-113} -16533 q^{-114} -29031 q^{-115} -20983 q^{-116} +2559 q^{-117} +19069 q^{-118} +24136 q^{-119} +12338 q^{-120} -5598 q^{-121} -19428 q^{-122} -18904 q^{-123} -4878 q^{-124} +7799 q^{-125} +15768 q^{-126} +12298 q^{-127} +2399 q^{-128} -8654 q^{-129} -12184 q^{-130} -6688 q^{-131} -4 q^{-132} +6715 q^{-133} +7780 q^{-134} +4589 q^{-135} -1590 q^{-136} -5099 q^{-137} -4210 q^{-138} -2288 q^{-139} +1251 q^{-140} +2980 q^{-141} +2969 q^{-142} +620 q^{-143} -1136 q^{-144} -1398 q^{-145} -1474 q^{-146} -310 q^{-147} +553 q^{-148} +1100 q^{-149} +454 q^{-150} -41 q^{-151} -151 q^{-152} -481 q^{-153} -245 q^{-154} -22 q^{-155} +276 q^{-156} +100 q^{-157} +18 q^{-158} +59 q^{-159} -94 q^{-160} -64 q^{-161} -35 q^{-162} +68 q^{-163} - q^{-164} -10 q^{-165} +30 q^{-166} -15 q^{-167} -8 q^{-168} -12 q^{-169} +22 q^{-170} -4 q^{-171} -10 q^{-172} +9 q^{-173} -3 q^{-174} -3 q^{-176} +4 q^{-177} + q^{-178} -3 q^{-179} + q^{-180} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 47: | Line 80: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 149]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 149]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 18, 14, 19], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 18, 14, 19], |
|||
X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], |
X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], |
||
X[19, 14, 20, 15], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
X[19, 14, 20, 15], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 149]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 149]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -5, 6, 9, -3, -4, 8, -7, 5, -6, |
|||
4, -8, 7]</nowiki></pre></td></tr> |
4, -8, 7]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 149]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 149]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -12, 2, 16, -6, 18, 20, 10, 14]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 149]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -2, 1, -2, 1, -2, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, -2, 1, -2, 1, -2, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 149]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 149]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 149]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_149_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 149]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 149]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 9 2 3 |
|||
11 - t + -- - - - 9 t + 5 t - t |
11 - t + -- - - - 9 t + 5 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 149]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 149]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 2 z - z - z</nowiki></pre></td></tr> |
1 + 2 z - z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 20], Knot[10, 149], Knot[11, NonAlternating, 26]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{41, -4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 149]], KnotSignature[Knot[10, 149]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{41, -4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 149]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 3 5 7 7 7 6 3 2 |
|||
q - -- + -- - -- + -- - -- + -- - -- + -- |
q - -- + -- - -- + -- - -- + -- - -- + -- |
||
9 8 7 6 5 4 3 2 |
9 8 7 6 5 4 3 2 |
||
q q q q q q q q</nowiki></pre></td></tr> |
q q q q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 149]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 149]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 149]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -30 -28 -26 2 3 -16 -12 3 2 |
|||
q - q + q - --- - --- + q + q + --- + -- |
q - q + q - --- - --- + q + q + --- + -- |
||
22 18 10 6 |
22 18 10 6 |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 149]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 149]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 4 2 6 2 8 2 4 4 6 4 |
|||
4 a - 4 a + a + 6 a z - 6 a z + 2 a z + 2 a z - 4 a z + |
|||
8 4 6 6 |
|||
a z - a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 149]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 5 7 9 11 4 2 6 2 |
|||
4 a + 4 a + a - 3 a z - 3 a z + a z + a z - 7 a z - 9 a z + |
4 a + 4 a + a - 3 a z - 3 a z + a z + a z - 7 a z - 9 a z + |
||
| Line 102: | Line 164: | ||
6 8 8 8 |
6 8 8 8 |
||
a z + a z</nowiki></pre></td></tr> |
a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 149]], Vassiliev[3][Knot[10, 149]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 149]], Vassiliev[3][Knot[10, 149]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 1 2 1 3 2 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 149]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 1 2 1 3 2 4 |
|||
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
3 21 8 19 7 17 7 17 6 15 6 15 5 |
3 21 8 19 7 17 7 17 6 15 6 15 5 |
||
| Line 119: | Line 183: | ||
5 |
5 |
||
q t</nowiki></pre></td></tr> |
q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 149], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 3 -26 8 14 27 29 10 50 37 22 |
|||
q - --- + q + --- - --- + --- - --- - --- + --- - --- - --- + |
|||
27 25 24 22 21 20 19 18 17 |
|||
q q q q q q q q q |
|||
61 34 29 55 21 28 36 6 18 14 2 6 |
|||
--- - --- - --- + --- - --- - --- + --- - -- - -- + -- + -- - -- + |
|||
16 15 14 13 12 11 10 9 8 7 6 5 |
|||
q q q q q q q q q q q q |
|||
2 -3 |
|||
-- + q |
|||
4 |
|||
q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
||
Revision as of 18:26, 29 August 2005
|
|
|
|
Visit 10 149's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 149's page at Knotilus! Visit 10 149's page at the original Knot Atlas! |
10 149 Further Notes and Views
Knot presentations
| Planar diagram presentation | X1425 X3849 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X7283 |
| Gauss code | -1, 10, -2, 1, 3, -9, -10, 2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7 |
| Dowker-Thistlethwaite code | 4 8 -12 2 16 -6 18 20 10 14 |
| Conway Notation | [(3,2)(21,2-)] |
|
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+5 t^2-9 t+11-9 t^{-1} +5 t^{-2} - t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6-z^4+2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 41, -4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-2} -3 q^{-3} +6 q^{-4} -7 q^{-5} +7 q^{-6} -7 q^{-7} +5 q^{-8} -3 q^{-9} + q^{-10} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8+2 z^2 a^8+a^8-z^6 a^6-4 z^4 a^6-6 z^2 a^6-4 a^6+2 z^4 a^4+6 z^2 a^4+4 a^4} |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{30}-q^{28}+q^{26}-2 q^{22}-3 q^{18}+q^{16}+q^{12}+3 q^{10}+2 q^6} |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{162}-2 q^{160}+4 q^{158}-6 q^{156}+4 q^{154}-2 q^{152}-4 q^{150}+13 q^{148}-20 q^{146}+24 q^{144}-21 q^{142}+7 q^{140}+11 q^{138}-31 q^{136}+48 q^{134}-46 q^{132}+31 q^{130}-3 q^{128}-28 q^{126}+47 q^{124}-46 q^{122}+28 q^{120}+2 q^{118}-28 q^{116}+38 q^{114}-23 q^{112}-6 q^{110}+39 q^{108}-57 q^{106}+50 q^{104}-22 q^{102}-21 q^{100}+56 q^{98}-74 q^{96}+70 q^{94}-45 q^{92}+4 q^{90}+32 q^{88}-58 q^{86}+59 q^{84}-45 q^{82}+12 q^{80}+17 q^{78}-36 q^{76}+33 q^{74}-16 q^{72}-13 q^{70}+38 q^{68}-47 q^{66}+29 q^{64}+q^{62}-35 q^{60}+59 q^{58}-55 q^{56}+36 q^{54}-4 q^{52}-22 q^{50}+39 q^{48}-37 q^{46}+28 q^{44}-7 q^{42}-4 q^{40}+12 q^{38}-11 q^{36}+9 q^{34}-q^{32}+q^{30}+q^{28}} |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}-2 q^{19}+2 q^{17}-2 q^{15}-q^9+3 q^7-q^5+2 q^3} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}-2 q^{56}-q^{54}+6 q^{52}-5 q^{50}-6 q^{48}+13 q^{46}-2 q^{44}-12 q^{42}+11 q^{40}+3 q^{38}-9 q^{36}+2 q^{34}+5 q^{32}-2 q^{30}-8 q^{28}+5 q^{26}+6 q^{24}-13 q^{22}+2 q^{20}+12 q^{18}-10 q^{16}-2 q^{14}+10 q^{12}-2 q^{10}-3 q^8+3 q^6+q^4} |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{111}-2 q^{109}-q^{107}+3 q^{105}+3 q^{103}-5 q^{101}-9 q^{99}+11 q^{97}+17 q^{95}-12 q^{93}-31 q^{91}+7 q^{89}+48 q^{87}+4 q^{85}-60 q^{83}-21 q^{81}+58 q^{79}+39 q^{77}-51 q^{75}-47 q^{73}+36 q^{71}+49 q^{69}-16 q^{67}-43 q^{65}-q^{63}+34 q^{61}+18 q^{59}-26 q^{57}-30 q^{55}+14 q^{53}+44 q^{51}-6 q^{49}-53 q^{47}-7 q^{45}+61 q^{43}+17 q^{41}-58 q^{39}-35 q^{37}+49 q^{35}+44 q^{33}-36 q^{31}-47 q^{29}+15 q^{27}+44 q^{25}+2 q^{23}-30 q^{21}-10 q^{19}+17 q^{17}+12 q^{15}-3 q^{13}-8 q^{11}+q^9+2 q^7+2 q^5} |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{265}-2 q^{263}-q^{261}+3 q^{259}-3 q^{251}-3 q^{249}+8 q^{247}+9 q^{245}-5 q^{243}-16 q^{241}-19 q^{239}+35 q^{235}+61 q^{233}+19 q^{231}-78 q^{229}-130 q^{227}-77 q^{225}+90 q^{223}+254 q^{221}+237 q^{219}-50 q^{217}-407 q^{215}-487 q^{213}-132 q^{211}+489 q^{209}+839 q^{207}+497 q^{205}-424 q^{203}-1181 q^{201}-1008 q^{199}+121 q^{197}+1362 q^{195}+1573 q^{193}+408 q^{191}-1289 q^{189}-2030 q^{187}-1032 q^{185}+935 q^{183}+2205 q^{181}+1615 q^{179}-379 q^{177}-2080 q^{175}-1982 q^{173}-195 q^{171}+1672 q^{169}+2053 q^{167}+692 q^{165}-1136 q^{163}-1863 q^{161}-989 q^{159}+595 q^{157}+1498 q^{155}+1088 q^{153}-133 q^{151}-1092 q^{149}-1058 q^{147}-191 q^{145}+721 q^{143}+962 q^{141}+420 q^{139}-438 q^{137}-905 q^{135}-587 q^{133}+246 q^{131}+892 q^{129}+771 q^{127}-103 q^{125}-963 q^{123}-979 q^{121}-44 q^{119}+1061 q^{117}+1266 q^{115}+240 q^{113}-1147 q^{111}-1559 q^{109}-535 q^{107}+1113 q^{105}+1869 q^{103}+911 q^{101}-944 q^{99}-2033 q^{97}-1342 q^{95}+562 q^{93}+2024 q^{91}+1742 q^{89}-52 q^{87}-1759 q^{85}-1965 q^{83}-540 q^{81}+1255 q^{79}+1947 q^{77}+1046 q^{75}-620 q^{73}-1646 q^{71}-1313 q^{69}-29 q^{67}+1126 q^{65}+1306 q^{63}+502 q^{61}-548 q^{59}-1030 q^{57}-714 q^{55}+48 q^{53}+627 q^{51}+663 q^{49}+249 q^{47}-245 q^{45}-458 q^{43}-317 q^{41}-9 q^{39}+211 q^{37}+249 q^{35}+117 q^{33}-54 q^{31}-123 q^{29}-95 q^{27}-29 q^{25}+35 q^{23}+58 q^{21}+30 q^{19}+q^{17}-10 q^{15}-17 q^{13}-8 q^{11}+q^9+4 q^7+2 q^5+2 q^3} |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{366}-2 q^{364}-q^{362}+3 q^{360}-3 q^{354}+5 q^{352}-2 q^{350}-7 q^{348}+11 q^{346}+2 q^{344}-6 q^{342}-18 q^{340}+3 q^{338}+3 q^{336}+6 q^{334}+52 q^{332}+29 q^{330}-27 q^{328}-106 q^{326}-77 q^{324}-49 q^{322}+52 q^{320}+260 q^{318}+273 q^{316}+92 q^{314}-295 q^{312}-505 q^{310}-564 q^{308}-210 q^{306}+614 q^{304}+1189 q^{302}+1124 q^{300}+131 q^{298}-1116 q^{296}-2211 q^{294}-2045 q^{292}-176 q^{290}+2251 q^{288}+3812 q^{286}+2998 q^{284}+186 q^{282}-3777 q^{280}-5987 q^{278}-4367 q^{276}+433 q^{274}+5897 q^{272}+8181 q^{270}+5703 q^{268}-1382 q^{266}-8446 q^{264}-10636 q^{262}-6118 q^{260}+2935 q^{258}+10738 q^{256}+12548 q^{254}+5828 q^{252}-4946 q^{250}-12943 q^{248}-12903 q^{246}-4535 q^{244}+6735 q^{242}+14172 q^{240}+12093 q^{238}+2490 q^{236}-8445 q^{234}-13670 q^{232}-10081 q^{230}-446 q^{228}+9229 q^{226}+12125 q^{224}+7406 q^{222}-1548 q^{220}-8668 q^{218}-9805 q^{216}-4859 q^{214}+2751 q^{212}+7553 q^{210}+7320 q^{208}+2586 q^{206}-3049 q^{204}-6218 q^{202}-5220 q^{200}-1048 q^{198}+3168 q^{196}+5101 q^{194}+3559 q^{192}-3430 q^{188}-4384 q^{186}-2400 q^{184}+1196 q^{182}+4070 q^{180}+4003 q^{178}+1157 q^{176}-2854 q^{174}-4952 q^{172}-3683 q^{170}+646 q^{168}+5007 q^{166}+5952 q^{164}+2647 q^{162}-3199 q^{160}-7211 q^{158}-6588 q^{156}-735 q^{154}+6290 q^{152}+9322 q^{150}+6044 q^{148}-1983 q^{146}-9142 q^{144}-10766 q^{142}-4600 q^{140}+5071 q^{138}+11688 q^{136}+10782 q^{134}+2503 q^{132}-7581 q^{130}-13317 q^{128}-9992 q^{126}-241 q^{124}+9619 q^{122}+13372 q^{120}+8614 q^{118}-1344 q^{116}-10625 q^{114}-12652 q^{112}-7014 q^{110}+2585 q^{108}+10140 q^{106}+11276 q^{104}+5779 q^{102}-3062 q^{100}-9058 q^{98}-9496 q^{96}-4483 q^{94}+2537 q^{92}+7492 q^{90}+7793 q^{88}+3493 q^{86}-1894 q^{84}-5681 q^{82}-5884 q^{80}-2989 q^{78}+1166 q^{76}+4066 q^{74}+4208 q^{72}+2353 q^{70}-475 q^{68}-2517 q^{66}-2981 q^{64}-1757 q^{62}+78 q^{60}+1384 q^{58}+1842 q^{56}+1258 q^{54}+220 q^{52}-730 q^{50}-1022 q^{48}-772 q^{46}-272 q^{44}+260 q^{42}+509 q^{40}+462 q^{38}+180 q^{36}-51 q^{34}-191 q^{32}-217 q^{30}-125 q^{28}-11 q^{26}+71 q^{24}+74 q^{22}+55 q^{20}+23 q^{18}-9 q^{16}-24 q^{14}-19 q^{12}-7 q^{10}-q^8+3 q^6+3 q^4+3 q^2+1} |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{30}-q^{28}+q^{26}-2 q^{22}-3 q^{18}+q^{16}+q^{12}+3 q^{10}+2 q^6} |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{84}-4 q^{82}+10 q^{80}-20 q^{78}+36 q^{76}-60 q^{74}+88 q^{72}-120 q^{70}+152 q^{68}-174 q^{66}+178 q^{64}-158 q^{62}+114 q^{60}-40 q^{58}-52 q^{56}+148 q^{54}-240 q^{52}+308 q^{50}-348 q^{48}+356 q^{46}-324 q^{44}+270 q^{42}-186 q^{40}+92 q^{38}-q^{36}-88 q^{34}+146 q^{32}-192 q^{30}+193 q^{28}-180 q^{26}+146 q^{24}-104 q^{22}+69 q^{20}-32 q^{18}+20 q^{16}+2 q^{12}+2 q^{10}} |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{66}+4 q^{62}-6 q^{60}+8 q^{56}-9 q^{54}+10 q^{50}-7 q^{48}+6 q^{44}-q^{40}+3 q^{36}-4 q^{34}-11 q^{32}+2 q^{30}-2 q^{28}-12 q^{26}+9 q^{24}+5 q^{22}-3 q^{20}+9 q^{18}+4 q^{16}-q^{14}+3 q^{12}} |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{39}-q^{37}+2 q^{35}-q^{33}+q^{31}-2 q^{29}-q^{27}-3 q^{25}-2 q^{23}+3 q^{17}+q^{15}+4 q^{13}+2 q^9} |
| 1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{110}-4 q^{108}+8 q^{106}-8 q^{104}-2 q^{102}+23 q^{100}-44 q^{98}+45 q^{96}-13 q^{94}-50 q^{92}+111 q^{90}-130 q^{88}+81 q^{86}+27 q^{84}-142 q^{82}+211 q^{80}-188 q^{78}+83 q^{76}+54 q^{74}-158 q^{72}+179 q^{70}-123 q^{68}+30 q^{66}+22 q^{64}-16 q^{62}-40 q^{60}+85 q^{58}-54 q^{56}-24 q^{54}+156 q^{52}-216 q^{50}+211 q^{48}-112 q^{46}-39 q^{44}+133 q^{42}-206 q^{40}+141 q^{38}-82 q^{36}-20 q^{34}+64 q^{32}-61 q^{30}+52 q^{28}+2 q^{26}+4 q^{24}+18 q^{22}+q^{20}+3 q^{18}+2 q^{16}} |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{86}-q^{84}-q^{82}+4 q^{80}-q^{78}-7 q^{76}+2 q^{74}+4 q^{72}-6 q^{70}-4 q^{68}+7 q^{66}+3 q^{64}-5 q^{62}+4 q^{60}+12 q^{58}-q^{56}-q^{54}+13 q^{52}-q^{50}-11 q^{48}-q^{46}-4 q^{44}-19 q^{42}-12 q^{40}-q^{38}-3 q^{36}-6 q^{34}+6 q^{32}+13 q^{30}+4 q^{28}+6 q^{26}+9 q^{24}+4 q^{22}+3 q^{18}} |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{48}-q^{46}+2 q^{44}+q^{38}-2 q^{36}-q^{34}-4 q^{32}-2 q^{30}-3 q^{28}+3 q^{22}+3 q^{20}+2 q^{18}+4 q^{16}+2 q^{12}} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-2 q^{66}+4 q^{64}-6 q^{62}+8 q^{60}-10 q^{58}+10 q^{56}-9 q^{54}+6 q^{52}-2 q^{50}-3 q^{48}+8 q^{46}-12 q^{44}+16 q^{42}-19 q^{40}+18 q^{38}-17 q^{36}+12 q^{34}-9 q^{32}+2 q^{30}+2 q^{28}-6 q^{26}+9 q^{24}-9 q^{22}+11 q^{20}-7 q^{18}+8 q^{16}-3 q^{14}+3 q^{12}} |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{110}-2 q^{106}-2 q^{104}+2 q^{102}+5 q^{100}-7 q^{96}-5 q^{94}+6 q^{92}+9 q^{90}-2 q^{88}-11 q^{86}-3 q^{84}+10 q^{82}+7 q^{80}-6 q^{78}-7 q^{76}+4 q^{74}+8 q^{72}-q^{70}-7 q^{68}+8 q^{64}+2 q^{62}-6 q^{60}-5 q^{58}+4 q^{56}+4 q^{54}-6 q^{52}-10 q^{50}+q^{48}+8 q^{46}-q^{44}-11 q^{42}-6 q^{40}+9 q^{38}+10 q^{36}-2 q^{34}-8 q^{32}+q^{30}+8 q^{28}+6 q^{26}-2 q^{24}-2 q^{22}+q^{20}+3 q^{18}} |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{94}-2 q^{92}+2 q^{90}-3 q^{88}+5 q^{86}-7 q^{84}+6 q^{82}-7 q^{80}+9 q^{78}-8 q^{76}+5 q^{74}-4 q^{72}+4 q^{70}+2 q^{68}-5 q^{66}+6 q^{64}-7 q^{62}+14 q^{60}-12 q^{58}+14 q^{56}-13 q^{54}+15 q^{52}-12 q^{50}+7 q^{48}-14 q^{46}-6 q^{42}-6 q^{40}-2 q^{38}-7 q^{36}+9 q^{34}-4 q^{32}+12 q^{30}-3 q^{28}+12 q^{26}-q^{24}+7 q^{22}-2 q^{20}+3 q^{18}} |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{162}-2 q^{160}+4 q^{158}-6 q^{156}+4 q^{154}-2 q^{152}-4 q^{150}+13 q^{148}-20 q^{146}+24 q^{144}-21 q^{142}+7 q^{140}+11 q^{138}-31 q^{136}+48 q^{134}-46 q^{132}+31 q^{130}-3 q^{128}-28 q^{126}+47 q^{124}-46 q^{122}+28 q^{120}+2 q^{118}-28 q^{116}+38 q^{114}-23 q^{112}-6 q^{110}+39 q^{108}-57 q^{106}+50 q^{104}-22 q^{102}-21 q^{100}+56 q^{98}-74 q^{96}+70 q^{94}-45 q^{92}+4 q^{90}+32 q^{88}-58 q^{86}+59 q^{84}-45 q^{82}+12 q^{80}+17 q^{78}-36 q^{76}+33 q^{74}-16 q^{72}-13 q^{70}+38 q^{68}-47 q^{66}+29 q^{64}+q^{62}-35 q^{60}+59 q^{58}-55 q^{56}+36 q^{54}-4 q^{52}-22 q^{50}+39 q^{48}-37 q^{46}+28 q^{44}-7 q^{42}-4 q^{40}+12 q^{38}-11 q^{36}+9 q^{34}-q^{32}+q^{30}+q^{28}} |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 149"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+5 t^2-9 t+11-9 t^{-1} +5 t^{-2} - t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6-z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 41, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-2} -3 q^{-3} +6 q^{-4} -7 q^{-5} +7 q^{-6} -7 q^{-7} +5 q^{-8} -3 q^{-9} + q^{-10} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8+2 z^2 a^8+a^8-z^6 a^6-4 z^4 a^6-6 z^2 a^6-4 a^6+2 z^4 a^4+6 z^2 a^4+4 a^4} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {9_20, K11n26, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
| V2 and V3: | (2, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 10 149. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} +2 q^{-4} -6 q^{-5} +2 q^{-6} +14 q^{-7} -18 q^{-8} -6 q^{-9} +36 q^{-10} -28 q^{-11} -21 q^{-12} +55 q^{-13} -29 q^{-14} -34 q^{-15} +61 q^{-16} -22 q^{-17} -37 q^{-18} +50 q^{-19} -10 q^{-20} -29 q^{-21} +27 q^{-22} -14 q^{-24} +8 q^{-25} + q^{-26} -3 q^{-27} + q^{-28} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-4} - q^{-6} -9 q^{-7} +7 q^{-8} +15 q^{-9} +4 q^{-10} -36 q^{-11} -13 q^{-12} +47 q^{-13} +46 q^{-14} -65 q^{-15} -75 q^{-16} +58 q^{-17} +126 q^{-18} -60 q^{-19} -159 q^{-20} +35 q^{-21} +201 q^{-22} -16 q^{-23} -227 q^{-24} -11 q^{-25} +248 q^{-26} +34 q^{-27} -257 q^{-28} -55 q^{-29} +252 q^{-30} +78 q^{-31} -241 q^{-32} -90 q^{-33} +210 q^{-34} +105 q^{-35} -176 q^{-36} -103 q^{-37} +127 q^{-38} +101 q^{-39} -86 q^{-40} -84 q^{-41} +48 q^{-42} +62 q^{-43} -22 q^{-44} -40 q^{-45} +7 q^{-46} +24 q^{-47} -3 q^{-48} -11 q^{-49} + q^{-50} +4 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} +2 q^{-5} -6 q^{-7} -4 q^{-8} -4 q^{-9} +17 q^{-10} +26 q^{-11} -10 q^{-12} -26 q^{-13} -63 q^{-14} +12 q^{-15} +104 q^{-16} +59 q^{-17} + q^{-18} -206 q^{-19} -119 q^{-20} +140 q^{-21} +222 q^{-22} +211 q^{-23} -310 q^{-24} -385 q^{-25} -17 q^{-26} +337 q^{-27} +604 q^{-28} -226 q^{-29} -631 q^{-30} -354 q^{-31} +271 q^{-32} +1008 q^{-33} +27 q^{-34} -729 q^{-35} -718 q^{-36} +63 q^{-37} +1289 q^{-38} +310 q^{-39} -699 q^{-40} -987 q^{-41} -164 q^{-42} +1416 q^{-43} +532 q^{-44} -592 q^{-45} -1135 q^{-46} -362 q^{-47} +1396 q^{-48} +682 q^{-49} -416 q^{-50} -1144 q^{-51} -538 q^{-52} +1193 q^{-53} +743 q^{-54} -151 q^{-55} -972 q^{-56} -658 q^{-57} +807 q^{-58} +652 q^{-59} +123 q^{-60} -622 q^{-61} -623 q^{-62} +370 q^{-63} +404 q^{-64} +251 q^{-65} -251 q^{-66} -415 q^{-67} +91 q^{-68} +140 q^{-69} +190 q^{-70} -38 q^{-71} -182 q^{-72} +9 q^{-73} +10 q^{-74} +79 q^{-75} +9 q^{-76} -56 q^{-77} +7 q^{-78} -9 q^{-79} +20 q^{-80} +5 q^{-81} -14 q^{-82} +4 q^{-83} -3 q^{-84} +4 q^{-85} + q^{-86} -3 q^{-87} + q^{-88} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-4} +2 q^{-6} -3 q^{-7} -9 q^{-8} -9 q^{-9} +9 q^{-10} +11 q^{-11} +31 q^{-12} +25 q^{-13} -32 q^{-14} -73 q^{-15} -57 q^{-16} -17 q^{-17} +100 q^{-18} +196 q^{-19} +100 q^{-20} -111 q^{-21} -277 q^{-22} -325 q^{-23} -41 q^{-24} +409 q^{-25} +594 q^{-26} +303 q^{-27} -313 q^{-28} -904 q^{-29} -803 q^{-30} +93 q^{-31} +1076 q^{-32} +1353 q^{-33} +491 q^{-34} -1084 q^{-35} -1958 q^{-36} -1191 q^{-37} +743 q^{-38} +2379 q^{-39} +2157 q^{-40} -183 q^{-41} -2650 q^{-42} -2986 q^{-43} -682 q^{-44} +2585 q^{-45} +3864 q^{-46} +1611 q^{-47} -2368 q^{-48} -4448 q^{-49} -2586 q^{-50} +1894 q^{-51} +4953 q^{-52} +3466 q^{-53} -1410 q^{-54} -5204 q^{-55} -4234 q^{-56} +870 q^{-57} +5365 q^{-58} +4853 q^{-59} -384 q^{-60} -5409 q^{-61} -5339 q^{-62} -65 q^{-63} +5381 q^{-64} +5713 q^{-65} +490 q^{-66} -5288 q^{-67} -5985 q^{-68} -898 q^{-69} +5063 q^{-70} +6180 q^{-71} +1348 q^{-72} -4746 q^{-73} -6226 q^{-74} -1810 q^{-75} +4196 q^{-76} +6146 q^{-77} +2307 q^{-78} -3525 q^{-79} -5816 q^{-80} -2713 q^{-81} +2612 q^{-82} +5272 q^{-83} +3034 q^{-84} -1697 q^{-85} -4455 q^{-86} -3094 q^{-87} +745 q^{-88} +3485 q^{-89} +2936 q^{-90} +4 q^{-91} -2461 q^{-92} -2504 q^{-93} -525 q^{-94} +1518 q^{-95} +1938 q^{-96} +745 q^{-97} -764 q^{-98} -1339 q^{-99} -736 q^{-100} +277 q^{-101} +809 q^{-102} +572 q^{-103} -7 q^{-104} -418 q^{-105} -394 q^{-106} -73 q^{-107} +188 q^{-108} +217 q^{-109} +73 q^{-110} -61 q^{-111} -107 q^{-112} -56 q^{-113} +24 q^{-114} +50 q^{-115} +20 q^{-116} -9 q^{-117} -10 q^{-118} -14 q^{-119} -2 q^{-120} +15 q^{-121} + q^{-122} -6 q^{-123} + q^{-124} -3 q^{-126} +4 q^{-127} + q^{-128} -3 q^{-129} + q^{-130} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} +2 q^{-4} -4 q^{-7} -6 q^{-8} -12 q^{-9} -4 q^{-10} +17 q^{-11} +32 q^{-12} +32 q^{-13} +15 q^{-14} -9 q^{-15} -94 q^{-16} -118 q^{-17} -75 q^{-18} +58 q^{-19} +172 q^{-20} +246 q^{-21} +273 q^{-22} -47 q^{-23} -367 q^{-24} -607 q^{-25} -442 q^{-26} -78 q^{-27} +538 q^{-28} +1223 q^{-29} +991 q^{-30} +217 q^{-31} -1065 q^{-32} -1748 q^{-33} -1913 q^{-34} -686 q^{-35} +1687 q^{-36} +3033 q^{-37} +3045 q^{-38} +790 q^{-39} -1890 q^{-40} -4813 q^{-41} -4841 q^{-42} -1208 q^{-43} +3236 q^{-44} +6832 q^{-45} +6177 q^{-46} +2410 q^{-47} -5114 q^{-48} -9796 q^{-49} -8228 q^{-50} -1777 q^{-51} +7270 q^{-52} +12173 q^{-53} +11251 q^{-54} +383 q^{-55} -10932 q^{-56} -15783 q^{-57} -11376 q^{-58} +1632 q^{-59} +14200 q^{-60} +20532 q^{-61} +10341 q^{-62} -6174 q^{-63} -19536 q^{-64} -21236 q^{-65} -8119 q^{-66} +10875 q^{-67} +26268 q^{-68} +20425 q^{-69} +2105 q^{-70} -18630 q^{-71} -27853 q^{-72} -17790 q^{-73} +4709 q^{-74} +27892 q^{-75} +27584 q^{-76} +10132 q^{-77} -15352 q^{-78} -30885 q^{-79} -24815 q^{-80} -1144 q^{-81} +27269 q^{-82} +31596 q^{-83} +15978 q^{-84} -12047 q^{-85} -31830 q^{-86} -29176 q^{-87} -5473 q^{-88} +26000 q^{-89} +33694 q^{-90} +19989 q^{-91} -9201 q^{-92} -31763 q^{-93} -32050 q^{-94} -9069 q^{-95} +24016 q^{-96} +34648 q^{-97} +23419 q^{-98} -5642 q^{-99} -30221 q^{-100} -33983 q^{-101} -13285 q^{-102} +19844 q^{-103} +33650 q^{-104} +26588 q^{-105} -7 q^{-106} -25487 q^{-107} -33750 q^{-108} -18087 q^{-109} +12234 q^{-110} +28704 q^{-111} +27725 q^{-112} +7113 q^{-113} -16533 q^{-114} -29031 q^{-115} -20983 q^{-116} +2559 q^{-117} +19069 q^{-118} +24136 q^{-119} +12338 q^{-120} -5598 q^{-121} -19428 q^{-122} -18904 q^{-123} -4878 q^{-124} +7799 q^{-125} +15768 q^{-126} +12298 q^{-127} +2399 q^{-128} -8654 q^{-129} -12184 q^{-130} -6688 q^{-131} -4 q^{-132} +6715 q^{-133} +7780 q^{-134} +4589 q^{-135} -1590 q^{-136} -5099 q^{-137} -4210 q^{-138} -2288 q^{-139} +1251 q^{-140} +2980 q^{-141} +2969 q^{-142} +620 q^{-143} -1136 q^{-144} -1398 q^{-145} -1474 q^{-146} -310 q^{-147} +553 q^{-148} +1100 q^{-149} +454 q^{-150} -41 q^{-151} -151 q^{-152} -481 q^{-153} -245 q^{-154} -22 q^{-155} +276 q^{-156} +100 q^{-157} +18 q^{-158} +59 q^{-159} -94 q^{-160} -64 q^{-161} -35 q^{-162} +68 q^{-163} - q^{-164} -10 q^{-165} +30 q^{-166} -15 q^{-167} -8 q^{-168} -12 q^{-169} +22 q^{-170} -4 q^{-171} -10 q^{-172} +9 q^{-173} -3 q^{-174} -3 q^{-176} +4 q^{-177} + q^{-178} -3 q^{-179} + q^{-180} } |
| 7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.



