K11n26

From Knot Atlas
Jump to navigationJump to search

K11n25.gif

K11n25

K11n27.gif

K11n27

K11n26.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n26 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,13,6,12 X2837 X14,9,15,10 X18,12,19,11 X13,7,14,6 X20,15,21,16 X22,17,1,18 X10,20,11,19 X16,21,17,22
Gauss code 1, -4, 2, -1, -3, 7, 4, -2, 5, -10, 6, 3, -7, -5, 8, -11, 9, -6, 10, -8, 11, -9
Dowker-Thistlethwaite code 4 8 -12 2 14 18 -6 20 22 10 16
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n26 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11n26's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+5 t^2-9 t+11-9 t^{-1} +5 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 41, 0 }
Jones polynomial [math]\displaystyle{ -q^7+2 q^6-4 q^5+6 q^4-6 q^3+7 q^2-6 q+5-3 q^{-1} + q^{-2} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-2} -4 z^4 a^{-2} +2 z^4 a^{-4} +z^4-5 z^2 a^{-2} +6 z^2 a^{-4} -z^2 a^{-6} +2 z^2-2 a^{-2} +4 a^{-4} -2 a^{-6} +1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-3} +z^9 a^{-5} +3 z^8 a^{-2} +5 z^8 a^{-4} +2 z^8 a^{-6} +3 z^7 a^{-1} +2 z^7 a^{-3} +z^7 a^{-7} -9 z^6 a^{-2} -19 z^6 a^{-4} -9 z^6 a^{-6} +z^6-8 z^5 a^{-1} -16 z^5 a^{-3} -13 z^5 a^{-5} -5 z^5 a^{-7} +9 z^4 a^{-2} +20 z^4 a^{-4} +12 z^4 a^{-6} +z^4+3 a z^3+8 z^3 a^{-1} +16 z^3 a^{-3} +19 z^3 a^{-5} +8 z^3 a^{-7} +a^2 z^2-7 z^2 a^{-2} -11 z^2 a^{-4} -6 z^2 a^{-6} -z^2-a z-3 z a^{-1} -5 z a^{-3} -7 z a^{-5} -4 z a^{-7} +2 a^{-2} +4 a^{-4} +2 a^{-6} +1 }[/math]
The A2 invariant [math]\displaystyle{ q^6-q^4+q^2- q^{-2} + q^{-4} - q^{-6} +2 q^{-8} + q^{-10} + q^{-12} +2 q^{-14} - q^{-16} - q^{-20} - q^{-22} }[/math]
The G2 invariant Data:K11n26/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_20, 10_149,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (2, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{364}{3} }[/math] [math]\displaystyle{ \frac{68}{3} }[/math] [math]\displaystyle{ 256 }[/math] [math]\displaystyle{ \frac{1568}{3} }[/math] [math]\displaystyle{ \frac{224}{3} }[/math] [math]\displaystyle{ 96 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{2912}{3} }[/math] [math]\displaystyle{ \frac{544}{3} }[/math] [math]\displaystyle{ \frac{35911}{15} }[/math] [math]\displaystyle{ -\frac{1084}{15} }[/math] [math]\displaystyle{ \frac{49804}{45} }[/math] [math]\displaystyle{ \frac{329}{9} }[/math] [math]\displaystyle{ \frac{2071}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11n26. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
15         1-1
13        1 1
11       31 -2
9      31  2
7     33   0
5    43    1
3   23     1
1  34      -1
-1 13       2
-3 2        -2
-51         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n25.gif

K11n25

K11n27.gif

K11n27