K11n26

From Knot Atlas
Jump to navigationJump to search

K11n25.gif

K11n25

K11n27.gif

K11n27

K11n26.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n26 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,13,6,12 X2837 X14,9,15,10 X18,12,19,11 X13,7,14,6 X20,15,21,16 X22,17,1,18 X10,20,11,19 X16,21,17,22
Gauss code 1, -4, 2, -1, -3, 7, 4, -2, 5, -10, 6, 3, -7, -5, 8, -11, 9, -6, 10, -8, 11, -9
Dowker-Thistlethwaite code 4 8 -12 2 14 18 -6 20 22 10 16
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n26 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11n26's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 41, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11n26/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_20, 10_149,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n26. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
15         1-1
13        1 1
11       31 -2
9      31  2
7     33   0
5    43    1
3   23     1
1  34      -1
-1 13       2
-3 2        -2
-51         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n25.gif

K11n25

K11n27.gif

K11n27