K11n25

From Knot Atlas
Jump to navigationJump to search

K11n24.gif

K11n24

K11n26.gif

K11n26

K11n25.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n25 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X12,5,13,6 X2837 X9,15,10,14 X11,18,12,19 X6,13,7,14 X15,21,16,20 X17,1,18,22 X19,10,20,11 X21,17,22,16
Gauss code 1, -4, 2, -1, 3, -7, 4, -2, -5, 10, -6, -3, 7, 5, -8, 11, -9, 6, -10, 8, -11, 9
Dowker-Thistlethwaite code 4 8 12 2 -14 -18 6 -20 -22 -10 -16
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n25 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11n25's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^3-5 t^2+11 t-13+11 t^{-1} -5 t^{-2} + t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ z^6+z^4+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 47, 2 }
Jones polynomial [math]\displaystyle{ -q^8+3 q^7-5 q^6+7 q^5-8 q^4+8 q^3-7 q^2+5 q-2+ q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-4} -2 z^4 a^{-2} +4 z^4 a^{-4} -z^4 a^{-6} -5 z^2 a^{-2} +6 z^2 a^{-4} -2 z^2 a^{-6} +z^2-3 a^{-2} +3 a^{-4} - a^{-6} +2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-3} +z^9 a^{-5} +z^8 a^{-2} +4 z^8 a^{-4} +3 z^8 a^{-6} -3 z^7 a^{-3} +z^7 a^{-5} +4 z^7 a^{-7} -4 z^6 a^{-2} -14 z^6 a^{-4} -7 z^6 a^{-6} +3 z^6 a^{-8} +2 z^5 a^{-1} +6 z^5 a^{-3} -7 z^5 a^{-5} -10 z^5 a^{-7} +z^5 a^{-9} +12 z^4 a^{-2} +24 z^4 a^{-4} +6 z^4 a^{-6} -7 z^4 a^{-8} +z^4-3 z^3 a^{-1} +11 z^3 a^{-5} +6 z^3 a^{-7} -2 z^3 a^{-9} -12 z^2 a^{-2} -14 z^2 a^{-4} -3 z^2 a^{-6} +2 z^2 a^{-8} -3 z^2-2 z a^{-3} -4 z a^{-5} -2 z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2 }[/math]
The A2 invariant [math]\displaystyle{ q^4+q^2+2 q^{-2} -2 q^{-4} - q^{-10} +2 q^{-12} - q^{-14} +2 q^{-16} - q^{-20} + q^{-22} - q^{-24} }[/math]
The G2 invariant Data:K11n25/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_26,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {9_25,}

Vassiliev invariants

V2 and V3: (0, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{16}{3} }[/math] [math]\displaystyle{ -\frac{160}{3} }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ -\frac{568}{3} }[/math] [math]\displaystyle{ \frac{344}{3} }[/math] [math]\displaystyle{ -\frac{40}{3} }[/math] [math]\displaystyle{ 24 }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11n25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        2 2
13       31 -2
11      42  2
9     43   -1
7    44    0
5   34     1
3  24      -2
1 14       3
-1 1        -1
-31         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n24.gif

K11n24

K11n26.gif

K11n26