0 1: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart0.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 0, width is 1. |
|||
[[Invariants from Braid Theory|Braid index]] is 1. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n34]], [[K11n42]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
| Line 32: | Line 60: | ||
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=Not Available|J3=Not Available|J4=Not Available|J5=Not Available|J6=Not Available|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
| Line 39: | Line 70: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[0, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[Loop[1]]</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[0, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[]</nowiki></pre></td></tr> |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[1, {}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[1, {}]</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 0}</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[0, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:0_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[0, 1]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{, 0, 0, 1, NotAvailable, NotAvailable}</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[0, 1]][z]</nowiki></pre></td></tr> |
||
| ⚫ | |||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
| ⚫ | |||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 0}</nowiki></pre></td></tr> |
|||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
|||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[0, 1]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[0, 1]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 |
|||
1 + q + q</nowiki></pre></td></tr> |
1 + q + q</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[0, 1]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[0, 1]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[0, 1]], Vassiliev[3][Knot[0, 1]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[0, 1]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>1 |
|||
- + q |
- + q |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
||
Revision as of 17:04, 29 August 2005
|
|
|
|
Visit 0 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit [[math]\displaystyle{ \textrm{KnotilusURL}(\textrm{GaussCode}()) }[/math] 0 1's page] at Knotilus! Visit 0 1's page at the original Knot Atlas! Also known as "the Unknot" |
A temple symbol MANJI in a Japanese map[1] |
A toroidal bubble in glass [2] |
|||
Knot presentations
| Planar diagram presentation | [math]\displaystyle{ \textrm{Loop}(1) }[/math] |
| Gauss code | |
| Dowker-Thistlethwaite code | |
| Conway Notation | Data:0 1/Conway Notation |
|
Length is 0, width is 1. Braid index is 1. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | 1 |
| Conway polynomial | 1 |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 1, 0 } |
| Jones polynomial | 1 |
| HOMFLY-PT polynomial (db, data sources) | 1 |
| Kauffman polynomial (db, data sources) | 1 |
| The A2 invariant | Data:0 1/QuantumInvariant/A2/1,0 |
| The G2 invariant | [math]\displaystyle{ q^{10}+q^8+q^2+1+ q^{-2} + q^{-8} + q^{-10} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q+ q^{-1} }[/math] |
| 2 | [math]\displaystyle{ q^2+1+ q^{-2} }[/math] |
| 3 | [math]\displaystyle{ q^3+q+ q^{-1} + q^{-3} }[/math] |
| 4 | [math]\displaystyle{ q^4+q^2+1+ q^{-2} + q^{-4} }[/math] |
| 5 | [math]\displaystyle{ q^5+q^3+q+ q^{-1} + q^{-3} + q^{-5} }[/math] |
| 1 | [math]\displaystyle{ q+ q^{-1} }[/math] |
| 2 | [math]\displaystyle{ q^2+1+ q^{-2} }[/math] |
| 3 | [math]\displaystyle{ q^3+q+ q^{-1} + q^{-3} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,1 | [math]\displaystyle{ q^4+2 q^2+2+2 q^{-2} + q^{-4} }[/math] |
| 2,0 | [math]\displaystyle{ q^4+q^2+2+ q^{-2} + q^{-4} }[/math] |
| 3,0 | [math]\displaystyle{ q^6+q^4+2 q^2+2+2 q^{-2} + q^{-4} + q^{-6} }[/math] |
| 1,0 | Data:0 1/QuantumInvariant/A2/1,0 |
| 2,0 | [math]\displaystyle{ q^4+q^2+2+ q^{-2} + q^{-4} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^4+q^2+2+ q^{-2} + q^{-4} }[/math] |
| 1,0,0 | [math]\displaystyle{ q^3+q+ q^{-1} + q^{-3} }[/math] |
| 1,0,1 | [math]\displaystyle{ q^6+2 q^4+3 q^2+3+3 q^{-2} +2 q^{-4} + q^{-6} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^6+q^4+2 q^2+2+2 q^{-2} + q^{-4} + q^{-6} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^4+q^2+1+ q^{-2} + q^{-4} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^4+q^2+ q^{-2} + q^{-4} }[/math] |
| 1,0 | [math]\displaystyle{ q^6+q^2+1+ q^{-2} + q^{-6} }[/math] |
B3 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0 | [math]\displaystyle{ q^{10}+q^6+q^2+1+ q^{-2} + q^{-6} + q^{-10} }[/math] |
B4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{14}+q^{10}+q^6+q^2+1+ q^{-2} + q^{-6} + q^{-10} + q^{-14} }[/math] |
B5 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0,0 | [math]\displaystyle{ q^{18}+q^{14}+q^{10}+q^6+q^2+1+ q^{-2} + q^{-6} + q^{-10} + q^{-14} + q^{-18} }[/math] |
C3 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0 | [math]\displaystyle{ q^6+q^4+q^2+ q^{-2} + q^{-4} + q^{-6} }[/math] |
C4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^8+q^6+q^4+q^2+ q^{-2} + q^{-4} + q^{-6} + q^{-8} }[/math] |
C5 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0,0 | [math]\displaystyle{ q^{10}+q^8+q^6+q^4+q^2+ q^{-2} + q^{-4} + q^{-6} + q^{-8} + q^{-10} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{10}+q^8+3 q^6+3 q^4+4 q^2+4+4 q^{-2} +3 q^{-4} +3 q^{-6} + q^{-8} + q^{-10} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^6+q^4+q^2+2+ q^{-2} + q^{-4} + q^{-6} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{18}+q^{12}+q^{10}+q^8+q^6+q^2+2+ q^{-2} + q^{-6} + q^{-8} + q^{-10} + q^{-12} + q^{-18} }[/math] |
| 1,0 | [math]\displaystyle{ q^{10}+q^8+q^2+1+ q^{-2} + q^{-8} + q^{-10} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["0 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
1 |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
1 |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
1 |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
1 |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
1 |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n34, K11n42, ...}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {...}
Vassiliev invariants
| V2 and V3: | (0, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 0 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:0 1/KhovanovTable |
| Integral Khovanov Homology
(db, data source) |
Data:0 1/Integral Khovanov Homology |
The Coloured Jones Polynomials
| [math]\displaystyle{ n }[/math] | [math]\displaystyle{ J_n }[/math] |
| 2 | Not Available |
| 3 | Not Available |
| 4 | Not Available |
| 5 | Not Available |
| 6 | Not Available |
| 7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.







