K11n42
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
|
K11n42 is the mirror of the "Kinoshita-Terasaka" knot; it is a mutant of the (mirror of the) Conway knot K11n34. See also Heegaard Floer Knot Homology. Warning: There are two different conventions on whether K11n42 is the "Kinoshita-Terasaka" knot or its mirror. We caution the reader that the invariants below may have been computed using either convention. |
K11n42 is not [math]\displaystyle{ k }[/math]-colourable for any [math]\displaystyle{ k }[/math]. See The Determinant and the Signature.
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,5,13,6 X2837 X9,18,10,19 X11,21,12,20 X6,13,7,14 X15,10,16,11 X17,22,18,1 X19,15,20,14 X21,16,22,17 |
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, -5, 8, -6, -3, 7, 10, -8, 11, -9, 5, -10, 6, -11, 9 |
| Dowker-Thistlethwaite code | 4 8 12 2 -18 -20 6 -10 -22 -14 -16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | 1 |
| Conway polynomial | 1 |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 1, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^4+2 q^3-2 q^2+2 q+ q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^6+z^6+a^4 z^4-6 a^2 z^4-z^4 a^{-2} +6 z^4+3 a^4 z^2-11 a^2 z^2-3 z^2 a^{-2} +11 z^2+2 a^4-6 a^2-2 a^{-2} +7 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a z^9+z^9 a^{-1} +a^4 z^8+2 a^2 z^8+2 z^8 a^{-2} +3 z^8+2 a^5 z^7+2 a^3 z^7-5 a z^7-4 z^7 a^{-1} +z^7 a^{-3} +a^6 z^6-4 a^4 z^6-14 a^2 z^6-11 z^6 a^{-2} -20 z^6-9 a^5 z^5-12 a^3 z^5-2 z^5 a^{-1} -5 z^5 a^{-3} -4 a^6 z^4+2 a^4 z^4+26 a^2 z^4+16 z^4 a^{-2} +36 z^4+9 a^5 z^3+16 a^3 z^3+12 a z^3+11 z^3 a^{-1} +6 z^3 a^{-3} +3 a^6 z^2-2 a^4 z^2-20 a^2 z^2-9 z^2 a^{-2} -24 z^2-3 a^5 z-7 a^3 z-7 a z-5 z a^{-1} -2 z a^{-3} +2 a^4+6 a^2+2 a^{-2} +7 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{18}+q^{14}-q^{12}-q^{10}-q^8-2 q^6+q^4+3+2 q^{-2} + q^{-4} + q^{-6} - q^{-8} - q^{-12} }[/math] |
| The G2 invariant | Data:K11n42/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n42"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
1 |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
1 |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^4+2 q^3-2 q^2+2 q+ q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^6+z^6+a^4 z^4-6 a^2 z^4-z^4 a^{-2} +6 z^4+3 a^4 z^2-11 a^2 z^2-3 z^2 a^{-2} +11 z^2+2 a^4-6 a^2-2 a^{-2} +7 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a z^9+z^9 a^{-1} +a^4 z^8+2 a^2 z^8+2 z^8 a^{-2} +3 z^8+2 a^5 z^7+2 a^3 z^7-5 a z^7-4 z^7 a^{-1} +z^7 a^{-3} +a^6 z^6-4 a^4 z^6-14 a^2 z^6-11 z^6 a^{-2} -20 z^6-9 a^5 z^5-12 a^3 z^5-2 z^5 a^{-1} -5 z^5 a^{-3} -4 a^6 z^4+2 a^4 z^4+26 a^2 z^4+16 z^4 a^{-2} +36 z^4+9 a^5 z^3+16 a^3 z^3+12 a z^3+11 z^3 a^{-1} +6 z^3 a^{-3} +3 a^6 z^2-2 a^4 z^2-20 a^2 z^2-9 z^2 a^{-2} -24 z^2-3 a^5 z-7 a^3 z-7 a z-5 z a^{-1} -2 z a^{-3} +2 a^4+6 a^2+2 a^{-2} +7 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {0_1, K11n34,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n34,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n42"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ 1, [math]\displaystyle{ -q^4+2 q^3-2 q^2+2 q+ q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{0_1, K11n34,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n34,} |
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11n42. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|






