K11n43

From Knot Atlas
Jump to navigationJump to search

K11n42.gif

K11n42

K11n44.gif

K11n44

K11n43.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n43 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,13,6,12 X2837 X18,10,19,9 X20,11,21,12 X13,7,14,6 X10,16,11,15 X22,18,1,17 X14,19,15,20 X16,22,17,21
Gauss code 1, -4, 2, -1, -3, 7, 4, -2, 5, -8, 6, 3, -7, -10, 8, -11, 9, -5, 10, -6, 11, -9
Dowker-Thistlethwaite code 4 8 -12 2 18 20 -6 10 22 14 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n43 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11n43's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^3+10 t^2-20 t+25-20 t^{-1} +10 t^{-2} -2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^6-2 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 89, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+4 q^{10}-8 q^9+12 q^8-15 q^7+15 q^6-14 q^5+11 q^4-6 q^3+3 q^2 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -2 z^6 a^{-6} +3 z^4 a^{-4} -8 z^4 a^{-6} +3 z^4 a^{-8} +8 z^2 a^{-4} -12 z^2 a^{-6} +7 z^2 a^{-8} -z^2 a^{-10} +5 a^{-4} -7 a^{-6} +4 a^{-8} - a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^9 a^{-7} +2 z^9 a^{-9} +5 z^8 a^{-6} +11 z^8 a^{-8} +6 z^8 a^{-10} +3 z^7 a^{-5} +7 z^7 a^{-7} +11 z^7 a^{-9} +7 z^7 a^{-11} -11 z^6 a^{-6} -20 z^6 a^{-8} -5 z^6 a^{-10} +4 z^6 a^{-12} -3 z^5 a^{-5} -20 z^5 a^{-7} -30 z^5 a^{-9} -12 z^5 a^{-11} +z^5 a^{-13} +6 z^4 a^{-4} +21 z^4 a^{-6} +16 z^4 a^{-8} -5 z^4 a^{-10} -6 z^4 a^{-12} +4 z^3 a^{-5} +20 z^3 a^{-7} +23 z^3 a^{-9} +6 z^3 a^{-11} -z^3 a^{-13} -11 z^2 a^{-4} -21 z^2 a^{-6} -10 z^2 a^{-8} +2 z^2 a^{-10} +2 z^2 a^{-12} -4 z a^{-5} -8 z a^{-7} -6 z a^{-9} -2 z a^{-11} +5 a^{-4} +7 a^{-6} +4 a^{-8} + a^{-10} }[/math]
The A2 invariant [math]\displaystyle{ 3 q^{-6} - q^{-8} +4 q^{-10} + q^{-12} -2 q^{-14} +2 q^{-16} -5 q^{-18} + q^{-20} -2 q^{-22} +3 q^{-26} -2 q^{-28} +2 q^{-30} - q^{-34} }[/math]
The G2 invariant Data:K11n43/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_92, K11a153, K11a224, K11n35,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11n35,}

Vassiliev invariants

V2 and V3: (2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{364}{3} }[/math] [math]\displaystyle{ \frac{92}{3} }[/math] [math]\displaystyle{ 192 }[/math] [math]\displaystyle{ 592 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ 120 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ \frac{2912}{3} }[/math] [math]\displaystyle{ \frac{736}{3} }[/math] [math]\displaystyle{ \frac{39991}{15} }[/math] [math]\displaystyle{ -\frac{268}{5} }[/math] [math]\displaystyle{ \frac{62644}{45} }[/math] [math]\displaystyle{ \frac{377}{9} }[/math] [math]\displaystyle{ \frac{2551}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11n43. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
23         1-1
21        3 3
19       51 -4
17      73  4
15     85   -3
13    77    0
11   78     1
9  47      -3
7 27       5
514        -3
33         3
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n42.gif

K11n42

K11n44.gif

K11n44