9 31: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n11]], [[K11n22]], [[K11n112]], [[K11n127]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 41: | Line 72: | ||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^7-3 q^6+10 q^4-13 q^3-6 q^2+33 q-27-24 q^{-1} +66 q^{-2} -35 q^{-3} -48 q^{-4} +91 q^{-5} -32 q^{-6} -66 q^{-7} +93 q^{-8} -21 q^{-9} -65 q^{-10} +71 q^{-11} -7 q^{-12} -46 q^{-13} +38 q^{-14} + q^{-15} -21 q^{-16} +12 q^{-17} +2 q^{-18} -4 q^{-19} + q^{-20} </math>|J3=<math>-q^{15}+3 q^{14}-5 q^{12}-5 q^{11}+13 q^{10}+13 q^9-23 q^8-29 q^7+33 q^6+58 q^5-42 q^4-98 q^3+41 q^2+153 q-34-207 q^{-1} +4 q^{-2} +273 q^{-3} +26 q^{-4} -318 q^{-5} -80 q^{-6} +369 q^{-7} +123 q^{-8} -389 q^{-9} -179 q^{-10} +409 q^{-11} +213 q^{-12} -393 q^{-13} -256 q^{-14} +380 q^{-15} +265 q^{-16} -333 q^{-17} -277 q^{-18} +285 q^{-19} +262 q^{-20} -222 q^{-21} -238 q^{-22} +160 q^{-23} +204 q^{-24} -108 q^{-25} -155 q^{-26} +58 q^{-27} +116 q^{-28} -32 q^{-29} -71 q^{-30} +8 q^{-31} +46 q^{-32} -5 q^{-33} -20 q^{-34} - q^{-35} +8 q^{-36} +2 q^{-37} -4 q^{-38} + q^{-39} </math>|J4=<math>q^{26}-3 q^{25}+5 q^{23}+5 q^{21}-20 q^{20}-6 q^{19}+23 q^{18}+12 q^{17}+32 q^{16}-74 q^{15}-52 q^{14}+48 q^{13}+65 q^{12}+141 q^{11}-163 q^{10}-197 q^9+5 q^8+156 q^7+434 q^6-197 q^5-455 q^4-230 q^3+179 q^2+932 q-31-698 q^{-1} -694 q^{-2} -24 q^{-3} +1496 q^{-4} +381 q^{-5} -757 q^{-6} -1258 q^{-7} -479 q^{-8} +1926 q^{-9} +916 q^{-10} -581 q^{-11} -1736 q^{-12} -1046 q^{-13} +2120 q^{-14} +1393 q^{-15} -257 q^{-16} -2012 q^{-17} -1550 q^{-18} +2067 q^{-19} +1699 q^{-20} +114 q^{-21} -2044 q^{-22} -1879 q^{-23} +1790 q^{-24} +1772 q^{-25} +463 q^{-26} -1803 q^{-27} -1966 q^{-28} +1308 q^{-29} +1574 q^{-30} +731 q^{-31} -1317 q^{-32} -1774 q^{-33} +741 q^{-34} +1135 q^{-35} +811 q^{-36} -729 q^{-37} -1327 q^{-38} +279 q^{-39} +608 q^{-40} +665 q^{-41} -259 q^{-42} -786 q^{-43} +45 q^{-44} +208 q^{-45} +396 q^{-46} -27 q^{-47} -354 q^{-48} -11 q^{-49} +27 q^{-50} +168 q^{-51} +22 q^{-52} -117 q^{-53} -4 q^{-54} -11 q^{-55} +47 q^{-56} +13 q^{-57} -26 q^{-58} -5 q^{-60} +8 q^{-61} +2 q^{-62} -4 q^{-63} + q^{-64} </math>|J5=<math>-q^{40}+3 q^{39}-5 q^{37}+2 q^{34}+13 q^{33}+6 q^{32}-23 q^{31}-21 q^{30}-6 q^{29}+18 q^{28}+59 q^{27}+44 q^{26}-45 q^{25}-116 q^{24}-92 q^{23}+33 q^{22}+196 q^{21}+229 q^{20}+11 q^{19}-311 q^{18}-435 q^{17}-148 q^{16}+400 q^{15}+743 q^{14}+453 q^{13}-423 q^{12}-1148 q^{11}-933 q^{10}+274 q^9+1555 q^8+1656 q^7+125 q^6-1908 q^5-2531 q^4-850 q^3+2036 q^2+3554 q+1879-1899 q^{-1} -4480 q^{-2} -3230 q^{-3} +1357 q^{-4} +5366 q^{-5} +4704 q^{-6} -527 q^{-7} -5876 q^{-8} -6289 q^{-9} -682 q^{-10} +6241 q^{-11} +7754 q^{-12} +1973 q^{-13} -6158 q^{-14} -9091 q^{-15} -3457 q^{-16} +5986 q^{-17} +10161 q^{-18} +4798 q^{-19} -5471 q^{-20} -11023 q^{-21} -6142 q^{-22} +4979 q^{-23} +11585 q^{-24} +7224 q^{-25} -4226 q^{-26} -11966 q^{-27} -8242 q^{-28} +3587 q^{-29} +12014 q^{-30} +8966 q^{-31} -2685 q^{-32} -11871 q^{-33} -9620 q^{-34} +1898 q^{-35} +11379 q^{-36} +9913 q^{-37} -850 q^{-38} -10622 q^{-39} -10078 q^{-40} -78 q^{-41} +9526 q^{-42} +9834 q^{-43} +1094 q^{-44} -8162 q^{-45} -9332 q^{-46} -1930 q^{-47} +6608 q^{-48} +8454 q^{-49} +2583 q^{-50} -4978 q^{-51} -7300 q^{-52} -2962 q^{-53} +3432 q^{-54} +5982 q^{-55} +2988 q^{-56} -2081 q^{-57} -4572 q^{-58} -2802 q^{-59} +1065 q^{-60} +3297 q^{-61} +2319 q^{-62} -337 q^{-63} -2164 q^{-64} -1849 q^{-65} -36 q^{-66} +1357 q^{-67} +1256 q^{-68} +232 q^{-69} -729 q^{-70} -874 q^{-71} -233 q^{-72} +401 q^{-73} +488 q^{-74} +191 q^{-75} -157 q^{-76} -292 q^{-77} -135 q^{-78} +82 q^{-79} +140 q^{-80} +72 q^{-81} -27 q^{-82} -58 q^{-83} -44 q^{-84} +3 q^{-85} +38 q^{-86} +14 q^{-87} -8 q^{-88} -6 q^{-89} -4 q^{-90} -5 q^{-91} +8 q^{-92} +2 q^{-93} -4 q^{-94} + q^{-95} </math>|J6=<math>q^{57}-3 q^{56}+5 q^{54}-7 q^{51}+5 q^{50}-13 q^{49}-6 q^{48}+32 q^{47}+12 q^{46}+6 q^{45}-35 q^{44}-3 q^{43}-62 q^{42}-36 q^{41}+109 q^{40}+97 q^{39}+80 q^{38}-84 q^{37}-53 q^{36}-283 q^{35}-223 q^{34}+216 q^{33}+380 q^{32}+471 q^{31}+50 q^{30}-75 q^{29}-914 q^{28}-1017 q^{27}-59 q^{26}+798 q^{25}+1581 q^{24}+1094 q^{23}+642 q^{22}-1834 q^{21}-3035 q^{20}-1903 q^{19}+288 q^{18}+3153 q^{17}+3922 q^{16}+3835 q^{15}-1464 q^{14}-5813 q^{13}-6496 q^{12}-3466 q^{11}+2952 q^{10}+7804 q^9+10912 q^8+3157 q^7-6415 q^6-12771 q^5-12013 q^4-2596 q^3+9173 q^2+20363 q+13631-834 q^{-1} -16582 q^{-2} -23412 q^{-3} -14998 q^{-4} +3854 q^{-5} +27561 q^{-6} +27611 q^{-7} +12152 q^{-8} -13740 q^{-9} -32809 q^{-10} -31464 q^{-11} -8919 q^{-12} +28404 q^{-13} +40118 q^{-14} +29361 q^{-15} -3836 q^{-16} -36402 q^{-17} -46928 q^{-18} -25659 q^{-19} +22695 q^{-20} +47556 q^{-21} +45798 q^{-22} +9710 q^{-23} -34155 q^{-24} -57914 q^{-25} -41627 q^{-26} +13471 q^{-27} +49748 q^{-28} +58226 q^{-29} +22824 q^{-30} -28580 q^{-31} -63964 q^{-32} -54014 q^{-33} +3859 q^{-34} +48411 q^{-35} +66103 q^{-36} +33477 q^{-37} -21818 q^{-38} -66031 q^{-39} -62441 q^{-40} -5048 q^{-41} +44639 q^{-42} +69948 q^{-43} +41739 q^{-44} -14105 q^{-45} -64351 q^{-46} -67262 q^{-47} -13791 q^{-48} +37884 q^{-49} +69463 q^{-50} +47919 q^{-51} -4580 q^{-52} -57815 q^{-53} -67781 q^{-54} -22494 q^{-55} +27105 q^{-56} +63153 q^{-57} +50837 q^{-58} +6528 q^{-59} -45404 q^{-60} -62142 q^{-61} -29244 q^{-62} +13089 q^{-63} +50088 q^{-64} +48063 q^{-65} +16453 q^{-66} -28624 q^{-67} -49484 q^{-68} -30788 q^{-69} -383 q^{-70} +32408 q^{-71} +38503 q^{-72} +21191 q^{-73} -12206 q^{-74} -32402 q^{-75} -25661 q^{-76} -8609 q^{-77} +15450 q^{-78} +24803 q^{-79} +19092 q^{-80} -1246 q^{-81} -16397 q^{-82} -16395 q^{-83} -9916 q^{-84} +4182 q^{-85} +12156 q^{-86} +12711 q^{-87} +2804 q^{-88} -5902 q^{-89} -7710 q^{-90} -6870 q^{-91} -463 q^{-92} +4208 q^{-93} +6368 q^{-94} +2500 q^{-95} -1271 q^{-96} -2500 q^{-97} -3313 q^{-98} -1094 q^{-99} +860 q^{-100} +2462 q^{-101} +1162 q^{-102} -53 q^{-103} -461 q^{-104} -1170 q^{-105} -578 q^{-106} +4 q^{-107} +770 q^{-108} +344 q^{-109} +46 q^{-110} +7 q^{-111} -307 q^{-112} -188 q^{-113} -65 q^{-114} +209 q^{-115} +62 q^{-116} +9 q^{-117} +30 q^{-118} -62 q^{-119} -38 q^{-120} -27 q^{-121} +52 q^{-122} +5 q^{-123} -7 q^{-124} +12 q^{-125} -10 q^{-126} -4 q^{-127} -5 q^{-128} +8 q^{-129} +2 q^{-130} -4 q^{-131} + q^{-132} </math>|J7=<math>-q^{77}+3 q^{76}-5 q^{74}+7 q^{71}-5 q^{69}+13 q^{68}-3 q^{67}-23 q^{66}-12 q^{65}-6 q^{64}+35 q^{63}+31 q^{62}-5 q^{61}+43 q^{60}-17 q^{59}-90 q^{58}-87 q^{57}-83 q^{56}+96 q^{55}+172 q^{54}+120 q^{53}+200 q^{52}-6 q^{51}-287 q^{50}-409 q^{49}-517 q^{48}-29 q^{47}+477 q^{46}+689 q^{45}+1028 q^{44}+499 q^{43}-427 q^{42}-1271 q^{41}-2126 q^{40}-1402 q^{39}+161 q^{38}+1744 q^{37}+3579 q^{36}+3273 q^{35}+1186 q^{34}-1803 q^{33}-5643 q^{32}-6380 q^{31}-3948 q^{30}+722 q^{29}+7458 q^{28}+10657 q^{27}+9072 q^{26}+2824 q^{25}-8147 q^{24}-15843 q^{23}-16819 q^{22}-9805 q^{21}+6061 q^{20}+20328 q^{19}+26846 q^{18}+21458 q^{17}+863 q^{16}-22298 q^{15}-38050 q^{14}-37695 q^{13}-14077 q^{12}+18959 q^{11}+47751 q^{10}+57676 q^9+34751 q^8-7965 q^7-53130 q^6-78875 q^5-62159 q^4-12618 q^3+50763 q^2+98221 q+94484+42739 q^{-1} -38228 q^{-2} -111581 q^{-3} -128455 q^{-4} -81621 q^{-5} +14371 q^{-6} +116494 q^{-7} +160268 q^{-8} +125608 q^{-9} +20176 q^{-10} -110076 q^{-11} -186238 q^{-12} -172048 q^{-13} -63419 q^{-14} +93241 q^{-15} +204020 q^{-16} +215933 q^{-17} +111601 q^{-18} -66028 q^{-19} -211910 q^{-20} -255401 q^{-21} -161687 q^{-22} +32323 q^{-23} +211005 q^{-24} +287116 q^{-25} +209431 q^{-26} +5971 q^{-27} -201908 q^{-28} -311536 q^{-29} -253245 q^{-30} -44536 q^{-31} +187731 q^{-32} +327952 q^{-33} +290651 q^{-34} +82021 q^{-35} -169976 q^{-36} -338536 q^{-37} -322041 q^{-38} -115679 q^{-39} +151346 q^{-40} +343582 q^{-41} +347125 q^{-42} +145965 q^{-43} -132536 q^{-44} -345612 q^{-45} -367246 q^{-46} -171729 q^{-47} +114478 q^{-48} +344198 q^{-49} +382831 q^{-50} +195129 q^{-51} -96510 q^{-52} -341020 q^{-53} -395109 q^{-54} -215553 q^{-55} +78338 q^{-56} +334089 q^{-57} +403707 q^{-58} +235404 q^{-59} -58083 q^{-60} -324132 q^{-61} -409006 q^{-62} -253431 q^{-63} +35629 q^{-64} +308177 q^{-65} +408982 q^{-66} +270954 q^{-67} -9332 q^{-68} -286451 q^{-69} -403208 q^{-70} -285424 q^{-71} -19511 q^{-72} +256729 q^{-73} +388976 q^{-74} +296150 q^{-75} +50789 q^{-76} -220045 q^{-77} -365865 q^{-78} -300125 q^{-79} -81393 q^{-80} +176913 q^{-81} +332631 q^{-82} +295683 q^{-83} +109056 q^{-84} -130107 q^{-85} -290581 q^{-86} -281264 q^{-87} -130280 q^{-88} +83046 q^{-89} +241727 q^{-90} +256697 q^{-91} +142628 q^{-92} -39569 q^{-93} -189620 q^{-94} -223562 q^{-95} -144791 q^{-96} +3495 q^{-97} +138565 q^{-98} +184498 q^{-99} +136842 q^{-100} +22975 q^{-101} -92456 q^{-102} -143625 q^{-103} -120792 q^{-104} -38596 q^{-105} +54577 q^{-106} +104380 q^{-107} +99484 q^{-108} +44780 q^{-109} -26370 q^{-110} -70626 q^{-111} -76524 q^{-112} -42871 q^{-113} +7899 q^{-114} +43408 q^{-115} +54726 q^{-116} +36778 q^{-117} +2513 q^{-118} -24388 q^{-119} -36511 q^{-120} -28010 q^{-121} -6640 q^{-122} +11484 q^{-123} +22388 q^{-124} +20015 q^{-125} +7342 q^{-126} -4537 q^{-127} -12926 q^{-128} -12795 q^{-129} -5882 q^{-130} +769 q^{-131} +6644 q^{-132} +7817 q^{-133} +4294 q^{-134} +506 q^{-135} -3319 q^{-136} -4364 q^{-137} -2533 q^{-138} -821 q^{-139} +1377 q^{-140} +2273 q^{-141} +1479 q^{-142} +738 q^{-143} -598 q^{-144} -1183 q^{-145} -724 q^{-146} -417 q^{-147} +219 q^{-148} +498 q^{-149} +312 q^{-150} +306 q^{-151} -45 q^{-152} -291 q^{-153} -153 q^{-154} -111 q^{-155} +54 q^{-156} +91 q^{-157} +13 q^{-158} +84 q^{-159} +12 q^{-160} -58 q^{-161} -32 q^{-162} -21 q^{-163} +22 q^{-164} +19 q^{-165} -16 q^{-166} +13 q^{-167} +8 q^{-168} -10 q^{-169} -4 q^{-170} -5 q^{-171} +8 q^{-172} +2 q^{-173} -4 q^{-174} + q^{-175} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 48: | Line 82: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 31]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 31]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 18], X[5, 13, 6, 12], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 1, 12, 18], X[5, 13, 6, 12], |
|||
X[17, 7, 18, 6], X[7, 14, 8, 15], X[13, 16, 14, 17], X[15, 8, 16, 9], |
X[17, 7, 18, 6], X[7, 14, 8, 15], X[13, 16, 14, 17], X[15, 8, 16, 9], |
||
X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
X[9, 2, 10, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 31]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 31]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -4, 5, -6, 8, -9, 2, -3, 4, -7, 6, -8, 7, -5, 3]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 31]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 14, 2, 18, 16, 8, 6]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 31]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, 2, -3, 2, -3, -3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, 2, -3, 2, -3, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 31]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 31]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 31]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_31_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 31]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 31]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 13 2 3 |
|||
-17 + t - -- + -- + 13 t - 5 t + t |
-17 + t - -- + -- + 13 t - 5 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 31]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 31]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 2 z + z + z</nowiki></pre></td></tr> |
1 + 2 z + z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 31], Knot[11, NonAlternating, 11], |
|||
Knot[11, NonAlternating, 22], Knot[11, NonAlternating, 112], |
Knot[11, NonAlternating, 22], Knot[11, NonAlternating, 112], |
||
Knot[11, NonAlternating, 127]}</nowiki></pre></td></tr> |
Knot[11, NonAlternating, 127]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 31]], KnotSignature[Knot[9, 31]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 31]], KnotSignature[Knot[9, 31]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{55, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 4 6 8 10 9 8 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 31]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 4 6 8 10 9 8 2 |
|||
-5 + q - -- + -- - -- + -- - -- + - + 3 q - q |
-5 + q - -- + -- - -- + -- - -- + - + 3 q - q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></pre></td></tr> |
q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 31]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 31]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 31]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -20 2 -16 2 -12 -10 3 -4 3 2 |
|||
q - q - --- + q - --- + q + q + -- - q + -- - q + |
q - q - --- + q - --- + q + q + -- - q + -- - q + |
||
18 14 6 2 |
18 14 6 2 |
||
Line 93: | Line 148: | ||
4 6 |
4 6 |
||
q - q</nowiki></pre></td></tr> |
q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 31]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 31]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 2 2 2 4 2 6 2 4 2 4 |
|||
-1 + 4 a - 2 a - 2 z + 7 a z - 4 a z + a z - z + 4 a z - |
|||
4 4 2 6 |
|||
2 a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 31]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 z 3 5 2 2 2 |
|||
-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 5 z + 15 a z + |
-1 - 4 a - 2 a + - + 3 a z + 5 a z + 3 a z + 5 z + 15 a z + |
||
a |
a |
||
Line 113: | Line 176: | ||
7 3 7 5 7 2 8 4 8 |
7 3 7 5 7 2 8 4 8 |
||
3 a z + 7 a z + 4 a z + a z + a z</nowiki></pre></td></tr> |
3 a z + 7 a z + 4 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 31]], Vassiliev[3][Knot[9, 31]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 31]], Vassiliev[3][Knot[9, 31]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 5 1 3 1 3 3 5 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 31]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 5 1 3 1 3 3 5 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
||
Line 125: | Line 190: | ||
7 2 5 2 5 3 q |
7 2 5 2 5 3 q |
||
q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 31], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 4 2 12 21 -15 38 46 7 71 |
|||
-27 + q - --- + --- + --- - --- + q + --- - --- - --- + --- - |
|||
19 18 17 16 14 13 12 11 |
|||
q q q q q q q q |
|||
65 21 93 66 32 91 48 35 66 24 2 |
|||
--- - -- + -- - -- - -- + -- - -- - -- + -- - -- + 33 q - 6 q - |
|||
10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q |
|||
3 4 6 7 |
|||
13 q + 10 q - 3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:11, 29 August 2005
|
|
Visit 9 31's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 31's page at Knotilus! Visit 9 31's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,1,12,18 X5,13,6,12 X17,7,18,6 X7,14,8,15 X13,16,14,17 X15,8,16,9 X9,2,10,3 |
Gauss code | -1, 9, -2, 1, -4, 5, -6, 8, -9, 2, -3, 4, -7, 6, -8, 7, -5, 3 |
Dowker-Thistlethwaite code | 4 10 12 14 2 18 16 8 6 |
Conway Notation | [2111112] |
Length is 9, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 31"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 55, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n11, K11n22, K11n112, K11n127, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 31. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.