9 31

From Knot Atlas
Jump to navigationJump to search

9 30.gif

9_30

9 32.gif

9_32

9 31.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 31's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 31 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X11,1,12,18 X5,13,6,12 X17,7,18,6 X7,14,8,15 X13,16,14,17 X15,8,16,9 X9,2,10,3
Gauss code -1, 9, -2, 1, -4, 5, -6, 8, -9, 2, -3, 4, -7, 6, -8, 7, -5, 3
Dowker-Thistlethwaite code 4 10 12 14 2 18 16 8 6
Conway Notation [2111112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

9 31 ML.gif 9 31 AP.gif
[{11, 7}, {1, 9}, {8, 10}, {9, 11}, {10, 6}, {7, 2}, {5, 1}, {6, 3}, {2, 4}, {3, 5}, {4, 8}]

[edit Notes on presentations of 9 31]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-2]
Hyperbolic Volume 11.6863
A-Polynomial See Data:9 31/A-polynomial

[edit Notes for 9 31's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for 9 31's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^3-5 t^2+13 t-17+13 t^{-1} -5 t^{-2} + t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ z^6+z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 55, -2 }
Jones polynomial [math]\displaystyle{ -q^2+3 q-5+8 q^{-1} -9 q^{-2} +10 q^{-3} -8 q^{-4} +6 q^{-5} -4 q^{-6} + q^{-7} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^2 a^6-2 z^4 a^4-4 z^2 a^4-2 a^4+z^6 a^2+4 z^4 a^2+7 z^2 a^2+4 a^2-z^4-2 z^2-1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^4 a^8+4 z^5 a^7-4 z^3 a^7+6 z^6 a^6-8 z^4 a^6+3 z^2 a^6+4 z^7 a^5+z^5 a^5-8 z^3 a^5+3 z a^5+z^8 a^4+11 z^6 a^4-23 z^4 a^4+13 z^2 a^4-2 a^4+7 z^7 a^3-7 z^5 a^3-5 z^3 a^3+5 z a^3+z^8 a^2+8 z^6 a^2-21 z^4 a^2+15 z^2 a^2-4 a^2+3 z^7 a-3 z^5 a-3 z^3 a+3 z a+3 z^6-7 z^4+5 z^2-1+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} }[/math]
The A2 invariant [math]\displaystyle{ q^{22}-q^{20}-2 q^{18}+q^{16}-2 q^{14}+q^{12}+q^{10}+3 q^6-q^4+3 q^2- q^{-2} + q^{-4} - q^{-6} }[/math]
The G2 invariant [math]\displaystyle{ q^{114}-3 q^{112}+6 q^{110}-10 q^{108}+8 q^{106}-4 q^{104}-5 q^{102}+22 q^{100}-33 q^{98}+45 q^{96}-41 q^{94}+16 q^{92}+17 q^{90}-54 q^{88}+80 q^{86}-86 q^{84}+65 q^{82}-20 q^{80}-33 q^{78}+75 q^{76}-90 q^{74}+70 q^{72}-28 q^{70}-23 q^{68}+48 q^{66}-52 q^{64}+24 q^{62}+26 q^{60}-67 q^{58}+82 q^{56}-60 q^{54}+2 q^{52}+65 q^{50}-121 q^{48}+136 q^{46}-108 q^{44}+48 q^{42}+32 q^{40}-96 q^{38}+129 q^{36}-115 q^{34}+68 q^{32}-4 q^{30}-51 q^{28}+73 q^{26}-55 q^{24}+22 q^{22}+29 q^{20}-57 q^{18}+59 q^{16}-26 q^{14}-24 q^{12}+72 q^{10}-94 q^8+83 q^6-43 q^4-9 q^2+55-80 q^{-2} +81 q^{-4} -55 q^{-6} +18 q^{-8} +13 q^{-10} -35 q^{-12} +38 q^{-14} -31 q^{-16} +19 q^{-18} -5 q^{-20} -5 q^{-22} +7 q^{-24} -8 q^{-26} +5 q^{-28} -2 q^{-30} + q^{-32} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n11, K11n22, K11n112, K11n127,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{172}{3} }[/math] [math]\displaystyle{ \frac{20}{3} }[/math] [math]\displaystyle{ -128 }[/math] [math]\displaystyle{ -\frac{640}{3} }[/math] [math]\displaystyle{ -\frac{160}{3} }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1376}{3} }[/math] [math]\displaystyle{ \frac{160}{3} }[/math] [math]\displaystyle{ \frac{11911}{15} }[/math] [math]\displaystyle{ \frac{916}{15} }[/math] [math]\displaystyle{ \frac{12604}{45} }[/math] [math]\displaystyle{ -\frac{55}{9} }[/math] [math]\displaystyle{ \frac{631}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 9 31. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10123χ
5         1-1
3        2 2
1       31 -2
-1      52  3
-3     54   -1
-5    54    1
-7   35     2
-9  35      -2
-11 13       2
-13 3        -3
-151         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials