9 28: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[9_29]], [[10_163]], [[K11n87]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 41: | Line 72: | ||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^7-3 q^6+10 q^4-13 q^3-7 q^2+33 q-23-26 q^{-1} +61 q^{-2} -26 q^{-3} -49 q^{-4} +78 q^{-5} -20 q^{-6} -63 q^{-7} +77 q^{-8} -10 q^{-9} -59 q^{-10} +56 q^{-11} -38 q^{-13} +27 q^{-14} +3 q^{-15} -15 q^{-16} +8 q^{-17} + q^{-18} -3 q^{-19} + q^{-20} </math>|J3=<math>-q^{15}+3 q^{14}-5 q^{12}-5 q^{11}+13 q^{10}+14 q^9-23 q^8-32 q^7+29 q^6+63 q^5-29 q^4-102 q^3+17 q^2+149 q+4-187 q^{-1} -49 q^{-2} +235 q^{-3} +85 q^{-4} -253 q^{-5} -144 q^{-6} +281 q^{-7} +181 q^{-8} -276 q^{-9} -234 q^{-10} +282 q^{-11} +256 q^{-12} -258 q^{-13} -282 q^{-14} +235 q^{-15} +284 q^{-16} -196 q^{-17} -274 q^{-18} +150 q^{-19} +252 q^{-20} -110 q^{-21} -206 q^{-22} +62 q^{-23} +166 q^{-24} -35 q^{-25} -116 q^{-26} +13 q^{-27} +77 q^{-28} -5 q^{-29} -44 q^{-30} - q^{-31} +25 q^{-32} -12 q^{-34} + q^{-35} +4 q^{-36} + q^{-37} -3 q^{-38} + q^{-39} </math>|J4=<math>q^{26}-3 q^{25}+5 q^{23}+5 q^{21}-20 q^{20}-7 q^{19}+23 q^{18}+15 q^{17}+35 q^{16}-73 q^{15}-63 q^{14}+33 q^{13}+69 q^{12}+168 q^{11}-124 q^{10}-211 q^9-71 q^8+101 q^7+470 q^6-43 q^5-376 q^4-362 q^3-42 q^2+850 q+253-384 q^{-1} -758 q^{-2} -438 q^{-3} +1127 q^{-4} +681 q^{-5} -158 q^{-6} -1087 q^{-7} -978 q^{-8} +1195 q^{-9} +1080 q^{-10} +223 q^{-11} -1261 q^{-12} -1492 q^{-13} +1093 q^{-14} +1350 q^{-15} +616 q^{-16} -1282 q^{-17} -1854 q^{-18} +882 q^{-19} +1453 q^{-20} +940 q^{-21} -1151 q^{-22} -2007 q^{-23} +586 q^{-24} +1355 q^{-25} +1142 q^{-26} -850 q^{-27} -1895 q^{-28} +236 q^{-29} +1036 q^{-30} +1155 q^{-31} -441 q^{-32} -1498 q^{-33} -44 q^{-34} +579 q^{-35} +930 q^{-36} -85 q^{-37} -939 q^{-38} -146 q^{-39} +187 q^{-40} +570 q^{-41} +76 q^{-42} -453 q^{-43} -95 q^{-44} -2 q^{-45} +256 q^{-46} +76 q^{-47} -170 q^{-48} -24 q^{-49} -34 q^{-50} +85 q^{-51} +33 q^{-52} -54 q^{-53} +4 q^{-54} -16 q^{-55} +21 q^{-56} +8 q^{-57} -15 q^{-58} +4 q^{-59} -3 q^{-60} +4 q^{-61} + q^{-62} -3 q^{-63} + q^{-64} </math>|J5=<math>-q^{40}+3 q^{39}-5 q^{37}+2 q^{34}+13 q^{33}+7 q^{32}-23 q^{31}-24 q^{30}-9 q^{29}+18 q^{28}+64 q^{27}+57 q^{26}-32 q^{25}-126 q^{24}-127 q^{23}-8 q^{22}+185 q^{21}+289 q^{20}+124 q^{19}-234 q^{18}-502 q^{17}-360 q^{16}+176 q^{15}+734 q^{14}+767 q^{13}+47 q^{12}-928 q^{11}-1284 q^{10}-503 q^9+947 q^8+1871 q^7+1217 q^6-733 q^5-2382 q^4-2143 q^3+178 q^2+2771 q+3150+661 q^{-1} -2816 q^{-2} -4201 q^{-3} -1806 q^{-4} +2675 q^{-5} +5078 q^{-6} +3015 q^{-7} -2081 q^{-8} -5826 q^{-9} -4379 q^{-10} +1444 q^{-11} +6292 q^{-12} +5552 q^{-13} -482 q^{-14} -6579 q^{-15} -6752 q^{-16} -339 q^{-17} +6650 q^{-18} +7623 q^{-19} +1345 q^{-20} -6618 q^{-21} -8470 q^{-22} -2104 q^{-23} +6423 q^{-24} +8998 q^{-25} +2976 q^{-26} -6159 q^{-27} -9479 q^{-28} -3621 q^{-29} +5737 q^{-30} +9649 q^{-31} +4343 q^{-32} -5186 q^{-33} -9694 q^{-34} -4894 q^{-35} +4460 q^{-36} +9408 q^{-37} +5392 q^{-38} -3553 q^{-39} -8863 q^{-40} -5726 q^{-41} +2556 q^{-42} +8004 q^{-43} +5788 q^{-44} -1483 q^{-45} -6836 q^{-46} -5651 q^{-47} +506 q^{-48} +5562 q^{-49} +5112 q^{-50} +313 q^{-51} -4144 q^{-52} -4437 q^{-53} -854 q^{-54} +2895 q^{-55} +3532 q^{-56} +1109 q^{-57} -1787 q^{-58} -2657 q^{-59} -1115 q^{-60} +1003 q^{-61} +1809 q^{-62} +971 q^{-63} -466 q^{-64} -1166 q^{-65} -727 q^{-66} +180 q^{-67} +664 q^{-68} +497 q^{-69} -21 q^{-70} -374 q^{-71} -302 q^{-72} -14 q^{-73} +182 q^{-74} +161 q^{-75} +27 q^{-76} -80 q^{-77} -89 q^{-78} -17 q^{-79} +45 q^{-80} +34 q^{-81} -7 q^{-83} -16 q^{-84} -9 q^{-85} +16 q^{-86} +4 q^{-87} -7 q^{-88} + q^{-89} -3 q^{-91} +4 q^{-92} + q^{-93} -3 q^{-94} + q^{-95} </math>|J6=<math>q^{57}-3 q^{56}+5 q^{54}-7 q^{51}+5 q^{50}-13 q^{49}-7 q^{48}+32 q^{47}+15 q^{46}+9 q^{45}-35 q^{44}-9 q^{43}-69 q^{42}-47 q^{41}+102 q^{40}+117 q^{39}+120 q^{38}-45 q^{37}-50 q^{36}-328 q^{35}-330 q^{34}+84 q^{33}+354 q^{32}+613 q^{31}+332 q^{30}+199 q^{29}-814 q^{28}-1298 q^{27}-729 q^{26}+163 q^{25}+1417 q^{24}+1713 q^{23}+1867 q^{22}-541 q^{21}-2659 q^{20}-3156 q^{19}-2042 q^{18}+945 q^{17}+3462 q^{16}+5874 q^{15}+2618 q^{14}-2128 q^{13}-6111 q^{12}-7151 q^{11}-3450 q^{10}+2593 q^9+10526 q^8+9438 q^7+3327 q^6-5935 q^5-12847 q^4-12319 q^3-4092 q^2+11604 q+17056+13880 q^{-1} +573 q^{-2} -14619 q^{-3} -22321 q^{-4} -16287 q^{-5} +6070 q^{-6} +20900 q^{-7} +25831 q^{-8} +12673 q^{-9} -9865 q^{-10} -28956 q^{-11} -30012 q^{-12} -4947 q^{-13} +18792 q^{-14} +34868 q^{-15} +26341 q^{-16} -113 q^{-17} -30369 q^{-18} -41162 q^{-19} -17520 q^{-20} +12345 q^{-21} +39359 q^{-22} +37834 q^{-23} +10925 q^{-24} -27986 q^{-25} -48207 q^{-26} -28343 q^{-27} +4690 q^{-28} +40377 q^{-29} +45815 q^{-30} +20514 q^{-31} -24123 q^{-32} -51840 q^{-33} -36388 q^{-34} -2294 q^{-35} +39425 q^{-36} +50779 q^{-37} +28108 q^{-38} -19698 q^{-39} -52910 q^{-40} -42170 q^{-41} -8743 q^{-42} +36600 q^{-43} +53162 q^{-44} +34408 q^{-45} -13892 q^{-46} -50924 q^{-47} -45889 q^{-48} -15587 q^{-49} +30618 q^{-50} +52020 q^{-51} +39362 q^{-52} -5668 q^{-53} -44279 q^{-54} -46153 q^{-55} -22440 q^{-56} +20573 q^{-57} +45495 q^{-58} +41019 q^{-59} +4005 q^{-60} -32331 q^{-61} -40782 q^{-62} -26670 q^{-63} +8214 q^{-64} +33253 q^{-65} +36870 q^{-66} +11602 q^{-67} -17701 q^{-68} -29660 q^{-69} -25326 q^{-70} -2067 q^{-71} +18586 q^{-72} +27045 q^{-73} +13711 q^{-74} -5476 q^{-75} -16493 q^{-76} -18597 q^{-77} -6635 q^{-78} +6751 q^{-79} +15478 q^{-80} +10541 q^{-81} +841 q^{-82} -6267 q^{-83} -10291 q^{-84} -5932 q^{-85} +652 q^{-86} +6698 q^{-87} +5643 q^{-88} +2030 q^{-89} -1141 q^{-90} -4205 q^{-91} -3291 q^{-92} -904 q^{-93} +2196 q^{-94} +2111 q^{-95} +1183 q^{-96} +295 q^{-97} -1264 q^{-98} -1271 q^{-99} -667 q^{-100} +603 q^{-101} +537 q^{-102} +379 q^{-103} +321 q^{-104} -288 q^{-105} -361 q^{-106} -268 q^{-107} +176 q^{-108} +84 q^{-109} +55 q^{-110} +138 q^{-111} -53 q^{-112} -78 q^{-113} -78 q^{-114} +65 q^{-115} +2 q^{-116} -11 q^{-117} +40 q^{-118} -11 q^{-119} -10 q^{-120} -19 q^{-121} +23 q^{-122} - q^{-123} -11 q^{-124} +9 q^{-125} -3 q^{-126} -3 q^{-128} +4 q^{-129} + q^{-130} -3 q^{-131} + q^{-132} </math>|J7=<math>-q^{77}+3 q^{76}-5 q^{74}+7 q^{71}-5 q^{69}+13 q^{68}-2 q^{67}-23 q^{66}-15 q^{65}-9 q^{64}+35 q^{63}+37 q^{62}+3 q^{61}+48 q^{60}-12 q^{59}-93 q^{58}-112 q^{57}-123 q^{56}+62 q^{55}+181 q^{54}+183 q^{53}+291 q^{52}+108 q^{51}-218 q^{50}-472 q^{49}-749 q^{48}-378 q^{47}+200 q^{46}+674 q^{45}+1362 q^{44}+1204 q^{43}+412 q^{42}-758 q^{41}-2361 q^{40}-2630 q^{39}-1670 q^{38}+104 q^{37}+3047 q^{36}+4635 q^{35}+4352 q^{34}+2038 q^{33}-2974 q^{32}-6867 q^{31}-8261 q^{30}-6202 q^{29}+747 q^{28}+8024 q^{27}+13005 q^{26}+13048 q^{25}+4750 q^{24}-6746 q^{23}-17245 q^{22}-21869 q^{21}-14196 q^{20}+967 q^{19}+18712 q^{18}+31318 q^{17}+27719 q^{16}+10541 q^{15}-15230 q^{14}-38842 q^{13}-43597 q^{12}-28150 q^{11}+4392 q^{10}+41509 q^9+59441 q^8+50828 q^7+14529 q^6-36503 q^5-71811 q^4-76194 q^3-41156 q^2+22305 q+77588+100568 q^{-1} +73445 q^{-2} +1668 q^{-3} -74387 q^{-4} -121116 q^{-5} -108325 q^{-6} -33227 q^{-7} +61444 q^{-8} +134199 q^{-9} +142082 q^{-10} +70799 q^{-11} -39263 q^{-12} -139390 q^{-13} -172112 q^{-14} -109851 q^{-15} +10404 q^{-16} +135374 q^{-17} +195649 q^{-18} +148502 q^{-19} +23194 q^{-20} -124698 q^{-21} -212770 q^{-22} -183037 q^{-23} -57485 q^{-24} +108176 q^{-25} +222542 q^{-26} +213190 q^{-27} +91190 q^{-28} -89270 q^{-29} -227473 q^{-30} -237242 q^{-31} -121219 q^{-32} +68997 q^{-33} +227690 q^{-34} +256635 q^{-35} +148013 q^{-36} -50093 q^{-37} -225958 q^{-38} -271062 q^{-39} -170188 q^{-40} +32240 q^{-41} +222248 q^{-42} +282653 q^{-43} +189379 q^{-44} -16678 q^{-45} -218279 q^{-46} -291142 q^{-47} -205389 q^{-48} +1790 q^{-49} +213003 q^{-50} +298140 q^{-51} +220128 q^{-52} +12336 q^{-53} -206785 q^{-54} -302683 q^{-55} -233293 q^{-56} -27729 q^{-57} +197579 q^{-58} +304994 q^{-59} +246035 q^{-60} +44594 q^{-61} -184961 q^{-62} -303315 q^{-63} -256959 q^{-64} -63871 q^{-65} +166889 q^{-66} +296421 q^{-67} +265617 q^{-68} +84992 q^{-69} -143322 q^{-70} -282689 q^{-71} -269630 q^{-72} -106496 q^{-73} +113998 q^{-74} +260755 q^{-75} +267199 q^{-76} +126626 q^{-77} -80406 q^{-78} -231033 q^{-79} -256636 q^{-80} -142071 q^{-81} +45353 q^{-82} +193919 q^{-83} +236775 q^{-84} +151020 q^{-85} -11527 q^{-86} -152801 q^{-87} -208950 q^{-88} -150896 q^{-89} -16897 q^{-90} +110527 q^{-91} +174334 q^{-92} +142131 q^{-93} +38068 q^{-94} -71539 q^{-95} -137113 q^{-96} -125449 q^{-97} -49806 q^{-98} +38658 q^{-99} +100353 q^{-100} +103690 q^{-101} +53101 q^{-102} -14169 q^{-103} -67912 q^{-104} -79898 q^{-105} -49284 q^{-106} -1678 q^{-107} +41674 q^{-108} +57380 q^{-109} +41122 q^{-110} +9779 q^{-111} -22693 q^{-112} -38092 q^{-113} -31149 q^{-114} -12426 q^{-115} +10356 q^{-116} +23492 q^{-117} +21687 q^{-118} +11359 q^{-119} -3443 q^{-120} -13181 q^{-121} -13772 q^{-122} -8967 q^{-123} +39 q^{-124} +6883 q^{-125} +8148 q^{-126} +6185 q^{-127} +1000 q^{-128} -3226 q^{-129} -4318 q^{-130} -3912 q^{-131} -1160 q^{-132} +1349 q^{-133} +2176 q^{-134} +2319 q^{-135} +838 q^{-136} -574 q^{-137} -963 q^{-138} -1200 q^{-139} -520 q^{-140} +149 q^{-141} +357 q^{-142} +692 q^{-143} +311 q^{-144} -112 q^{-145} -153 q^{-146} -284 q^{-147} -102 q^{-148} +3 q^{-149} -13 q^{-150} +175 q^{-151} +93 q^{-152} -39 q^{-153} -22 q^{-154} -58 q^{-155} +8 q^{-156} +7 q^{-157} -40 q^{-158} +37 q^{-159} +24 q^{-160} -12 q^{-161} -4 q^{-162} -13 q^{-163} +13 q^{-164} +6 q^{-165} -16 q^{-166} +5 q^{-167} +5 q^{-168} -3 q^{-169} -3 q^{-171} +4 q^{-172} + q^{-173} -3 q^{-174} + q^{-175} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 48: | Line 82: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 28]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 28]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[11, 15, 12, 14], X[5, 13, 6, 12], |
|||
X[13, 7, 14, 6], X[15, 18, 16, 1], X[9, 16, 10, 17], |
X[13, 7, 14, 6], X[15, 18, 16, 1], X[9, 16, 10, 17], |
||
X[17, 10, 18, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
X[17, 10, 18, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 28]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 28]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -4, 5, -9, 2, -7, 8, -3, 4, -5, 3, -6, 7, -8, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 28]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 12, 2, 16, 14, 6, 18, 10]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 28]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, 2, -3, -3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, 2, -3, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 28]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 28]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 28]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_28_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 28]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 28]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 12 2 3 |
|||
-15 + t - -- + -- + 12 t - 5 t + t |
-15 + t - -- + -- + 12 t - 5 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 28]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 28]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z + z + z</nowiki></pre></td></tr> |
1 + z + z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 28], Knot[9, 29], Knot[10, 163], Knot[11, NonAlternating, 87]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{51, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 28]], KnotSignature[Knot[9, 28]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{51, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 28]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 5 8 9 8 8 2 |
|||
-5 + q - -- + -- - -- + -- - -- + - + 3 q - q |
-5 + q - -- + -- - -- + -- - -- + - + 3 q - q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></pre></td></tr> |
q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 28]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 28]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 28]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -18 -16 3 -12 4 3 2 4 6 |
|||
q - q + q - --- - q + -- + -- - q + q - q |
q - q + q - --- - q + -- + -- - q + q - q |
||
14 6 2 |
14 6 2 |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 28]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 28]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 2 4 2 6 2 4 |
|||
-1 + 5 a - 4 a + a - 2 z + 7 a z - 5 a z + a z - z + |
|||
2 4 4 4 2 6 |
|||
4 a z - 2 a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 28]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 z 3 5 7 2 |
|||
-1 - 5 a - 4 a - a + - + 3 a z + 6 a z + 6 a z + 2 a z + 5 z + |
-1 - 5 a - 4 a - a + - + 3 a z + 6 a z + 6 a z + 2 a z + 5 z + |
||
a |
a |
||
Line 106: | Line 169: | ||
4 6 6 6 7 3 7 5 7 2 8 4 8 |
4 6 6 6 7 3 7 5 7 2 8 4 8 |
||
8 a z + 4 a z + 3 a z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
8 a z + 4 a z + 3 a z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 28]], Vassiliev[3][Knot[9, 28]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 28]], Vassiliev[3][Knot[9, 28]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 5 1 2 1 3 2 5 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 28]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 5 1 2 1 3 2 5 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
||
Line 118: | Line 183: | ||
7 2 5 2 5 3 q |
7 2 5 2 5 3 q |
||
q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 28], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 3 -18 8 15 3 27 38 56 59 |
|||
-23 + q - --- + q + --- - --- + --- + --- - --- + --- - --- - |
|||
19 17 16 15 14 13 11 10 |
|||
q q q q q q q q |
|||
10 77 63 20 78 49 26 61 26 2 3 |
|||
-- + -- - -- - -- + -- - -- - -- + -- - -- + 33 q - 7 q - 13 q + |
|||
9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q |
|||
4 6 7 |
|||
10 q - 3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:10, 29 August 2005
|
|
Visit 9 28's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 28's page at Knotilus! Visit 9 28's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X15,18,16,1 X9,16,10,17 X17,10,18,11 X7283 |
Gauss code | -1, 9, -2, 1, -4, 5, -9, 2, -7, 8, -3, 4, -5, 3, -6, 7, -8, 6 |
Dowker-Thistlethwaite code | 4 8 12 2 16 14 6 18 10 |
Conway Notation | [21,21,2+] |
Length is 9, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 28"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 51, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {9_29, 10_163, K11n87, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 28. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.