9 28
From Knot Atlas
Jump to navigationJump to search
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 28's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X11,15,12,14 X5,13,6,12 X13,7,14,6 X15,18,16,1 X9,16,10,17 X17,10,18,11 X7283 |
Gauss code | -1, 9, -2, 1, -4, 5, -9, 2, -7, 8, -3, 4, -5, 3, -6, 7, -8, 6 |
Dowker-Thistlethwaite code | 4 8 12 2 16 14 6 18 10 |
Conway Notation | [21,21,2+] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
![]() |
![]() [{11, 3}, {2, 9}, {5, 10}, {9, 11}, {4, 6}, {3, 5}, {7, 4}, {6, 1}, {8, 2}, {10, 7}, {1, 8}] |
[edit Notes on presentations of 9 28]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {9_29, 10_163, K11n87,}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 28. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|