In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[7, 2]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 14, 6, 1], X[7, 12, 8, 13],
X[11, 8, 12, 9], X[13, 6, 14, 7], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[7, 2]] |
Out[3]= | GaussCode[-1, 7, -2, 1, -3, 6, -4, 5, -7, 2, -5, 4, -6, 3] |
In[4]:= | DTCode[Knot[7, 2]] |
Out[4]= | DTCode[4, 10, 14, 12, 2, 8, 6] |
In[5]:= | br = BR[Knot[7, 2]] |
Out[5]= | BR[4, {-1, -1, -1, -2, 1, -2, -3, 2, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[7, 2]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[7, 2]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[7, 2]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 1, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[7, 2]][t] |
Out[10]= | 3
-5 + - + 3 t
t |
In[11]:= | Conway[Knot[7, 2]][z] |
Out[11]= | 2
1 + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 2]} |
In[13]:= | {KnotDet[Knot[7, 2]], KnotSignature[Knot[7, 2]]} |
Out[13]= | {11, -2} |
In[14]:= | Jones[Knot[7, 2]][q] |
Out[14]= | -8 -7 -6 2 2 2 -2 1
-q + q - q + -- - -- + -- - q + -
5 4 3 q
q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 2], Knot[11, NonAlternating, 88]} |
In[16]:= | A2Invariant[Knot[7, 2]][q] |
Out[16]= | -26 -24 -18 -16 -8 -6 -2
-q - q + q + q + q + q + q |
In[17]:= | HOMFLYPT[Knot[7, 2]][a, z] |
Out[17]= | 2 6 8 2 2 4 2 6 2
a + a - a + a z + a z + a z |
In[18]:= | Kauffman[Knot[7, 2]][a, z] |
Out[18]= | 2 6 8 7 9 2 2 6 2 8 2 3 3
-a - a - a + 3 a z + 3 a z + a z + 3 a z + 4 a z + a z -
5 3 7 3 9 3 4 4 6 4 8 4 5 5
a z - 6 a z - 4 a z + a z - 3 a z - 4 a z + a z +
7 5 9 5 6 6 8 6
2 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[7, 2]], Vassiliev[3][Knot[7, 2]]} |
Out[19]= | {3, -6} |
In[20]:= | Kh[Knot[7, 2]][q, t] |
Out[20]= | -3 1 1 1 1 1 1 1 1
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
q 17 7 13 6 13 5 11 4 9 4 9 3 7 3
q t q t q t q t q t q t q t
1 1 1
----- + ----- + ----
7 2 5 2 3
q t q t q t |
In[21]:= | ColouredJones[Knot[7, 2], 2][q] |
Out[21]= | -23 -22 -21 2 -19 2 3 3 3 4 3
q - q - q + --- - q - --- + --- - --- + --- - --- + --- +
20 18 17 15 14 12 11
q q q q q q q
-10 4 3 -7 2 2 -3 -2
q - -- + -- + q - -- + -- - q + q
9 8 6 5
q q q q |