In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[8, 12]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 8, 11, 7], X[8, 3, 9, 4], X[2, 9, 3, 10],
X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 15, 13, 16], X[6, 14, 7, 13]] |
In[3]:= | GaussCode[Knot[8, 12]] |
Out[3]= | GaussCode[1, -4, 3, -1, 5, -8, 2, -3, 4, -2, 6, -7, 8, -5, 7, -6] |
In[4]:= | DTCode[Knot[8, 12]] |
Out[4]= | DTCode[4, 8, 14, 10, 2, 16, 6, 12] |
In[5]:= | br = BR[Knot[8, 12]] |
Out[5]= | BR[5, {-1, 2, -1, -3, 2, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 8} |
In[7]:= | BraidIndex[Knot[8, 12]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[8, 12]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[8, 12]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {FullyAmphicheiral, 2, 2, 2, {4, 6}, 1} |
In[10]:= | alex = Alexander[Knot[8, 12]][t] |
Out[10]= | -2 7 2
13 + t - - - 7 t + t
t |
In[11]:= | Conway[Knot[8, 12]][z] |
Out[11]= | 2 4
1 - 3 z + z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[8, 12]} |
In[13]:= | {KnotDet[Knot[8, 12]], KnotSignature[Knot[8, 12]]} |
Out[13]= | {29, 0} |
In[14]:= | Jones[Knot[8, 12]][q] |
Out[14]= | -4 2 4 5 2 3 4
5 + q - -- + -- - - - 5 q + 4 q - 2 q + q
3 2 q
q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[8, 12]} |
In[16]:= | A2Invariant[Knot[8, 12]][q] |
Out[16]= | -14 -12 -10 -8 -4 -2 2 4 8 10 12
-1 + q + q - q + q - q + q + q - q + q - q + q +
14
q |
In[17]:= | HOMFLYPT[Knot[8, 12]][a, z] |
Out[17]= | 2
-4 -2 2 4 2 2 z 2 2 4
1 + a - a - a + a + z - ---- - 2 a z + z
2
a |
In[18]:= | Kauffman[Knot[8, 12]][a, z] |
Out[18]= | 2 2
-4 -2 2 4 z 3 2 z 2 z 2 2 4 2
1 + a + a + a + a + -- + a z - ---- - ---- - 2 a z - 2 a z -
3 4 2
a a a
3 3 4 4
3 z 3 z 3 3 3 4 z z 2 4 4 4
---- - ---- - 3 a z - 3 a z - 4 z + -- - -- - a z + a z +
3 a 4 2
a a a
5 5 6 7
2 z 2 z 5 3 5 6 2 z 2 6 z 7
---- + ---- + 2 a z + 2 a z + 4 z + ---- + 2 a z + -- + a z
3 a 2 a
a a |
In[19]:= | {Vassiliev[2][Knot[8, 12]], Vassiliev[3][Knot[8, 12]]} |
Out[19]= | {-3, 0} |
In[20]:= | Kh[Knot[8, 12]][q, t] |
Out[20]= | 3 1 1 1 3 1 2 3
- + 3 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 3 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q t q t q t q t q t q t
3 3 2 5 2 5 3 7 3 9 4
2 q t + q t + 3 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[8, 12], 2][q] |
Out[21]= | -12 2 6 8 3 18 15 10 30 18 16
35 + q - --- + -- - -- - -- + -- - -- - -- + -- - -- - -- - 16 q -
11 9 8 7 6 5 4 3 2 q
q q q q q q q q q
2 3 4 5 6 7 8 9 11
18 q + 30 q - 10 q - 15 q + 18 q - 3 q - 8 q + 6 q - 2 q +
12
q |